These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35145137)
1. Numerical assessment of the influence of helical baffle on the hydrothermal aspects of nanofluid turbulent forced convection inside a heat exchanger. Yang L; Baghaei S; Suksatan W; Barnoon P; Sharma S; Davidyants A; El-Shafay AS Sci Rep; 2022 Feb; 12(1):2245. PubMed ID: 35145137 [TBL] [Abstract][Full Text] [Related]
2. Retraction Note: Numerical assessment of the influence of helical baffle on the hydrothermal aspects of nanofluid turbulent forced convection inside a heat exchanger. Yang L; Baghaei S; Suksatan W; Barnoon P; Sharma S; Davidyants A; El-Shafay AS Sci Rep; 2023 Jan; 13(1):961. PubMed ID: 36653440 [No Abstract] [Full Text] [Related]
3. Numerical analysis for thermal-hydraulic characteristics and the laminar two-phase nanofluid flow inside a tube equipped with helically twisted tapes as swirl and turbulence promoters. Kalani I; Toghraie D Sci Rep; 2021 Jun; 11(1):12228. PubMed ID: 34108555 [TBL] [Abstract][Full Text] [Related]
4. Numerical investigation on the impact of different design arrangements of helical heat exchangers with varying cross-sections utilizing ternary hybrid nanofluids. Fahad MK; Hasan MJ; Ifraj NF; Chandra Dey D Heliyon; 2024 Jul; 10(14):e34481. PubMed ID: 39082012 [TBL] [Abstract][Full Text] [Related]
5. Numerical study of location and depth of rectangular grooves on the turbulent heat transfer performance and characteristics of CuO-water nanofluid flow. Karami F; Abbasian Arani AA; Akbari OA; Pourfattah F; Toghraie D Heliyon; 2023 Mar; 9(3):e14239. PubMed ID: 36950575 [TBL] [Abstract][Full Text] [Related]
6. The Baffle Length Effects on the Natural Convection in Nanofluid-Filled Square Enclosure with Sinusoidal Temperature. Al-Farhany K; Al-Muhja B; Ali F; Khan U; Zaib A; Raizah Z; Galal AM Molecules; 2022 Jul; 27(14):. PubMed ID: 35889318 [TBL] [Abstract][Full Text] [Related]
7. Numerical Study of Flow and Heat Transfer Characteristics for Al Nam HT; Lee S; Kong M; Lee S Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138388 [TBL] [Abstract][Full Text] [Related]
8. Entropy generation and thermal analysis of nanofluid flow inside the evacuated tube solar collector. Tabarhoseini SM; Sheikholeslami M Sci Rep; 2022 Jan; 12(1):1380. PubMed ID: 35082336 [TBL] [Abstract][Full Text] [Related]
9. Heat Transfer and Pressure Drop of Nanofluid with Rod-like Particles in Turbulent Flows through a Curved Pipe. Lin W; Shi R; Lin J Entropy (Basel); 2022 Mar; 24(3):. PubMed ID: 35327926 [TBL] [Abstract][Full Text] [Related]
10. Particle Distribution and Heat Transfer of SiO Shi R; Lin J; Yang H Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014668 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of Multiple Semi-Twisted Tape Inserts in a Heat Exchanger Pipe Using Al Ju Y; Zhu T; Mashayekhi R; Mohammed HI; Khan A; Talebizadehsardari P; Yaïci W Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203635 [TBL] [Abstract][Full Text] [Related]
12. Heat transfer intensification of nanomaterial with involve of swirl flow device concerning entropy generation. Shah Z; Jafaryar M; Sheikholeslami M; Ikramullah ; Kumam P Sci Rep; 2021 Jun; 11(1):12504. PubMed ID: 34127716 [TBL] [Abstract][Full Text] [Related]
13. Classical 1/3 scaling of convection holds up to Ra = 10 Iyer KP; Scheel JD; Schumacher J; Sreenivasan KR Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7594-7598. PubMed ID: 32213591 [TBL] [Abstract][Full Text] [Related]
14. Numerical Study of Nanofluid Irreversibilities in a Heat Exchanger Used with an Aqueous Medium. Ovando-Chacon GE; Ovando-Chacon SL; Rodriguez-Leon A; Diaz-Gonzalez M; Hernandez-Zarate JA; Servin-Martinez A Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285861 [TBL] [Abstract][Full Text] [Related]
15. Analysis of entropy production in a bi-convective magnetized and radiative hybrid nanofluid flow using temperature-sensitive base fluid (water) properties. Barman T; Roy S; Chamkha AJ Sci Rep; 2022 Jul; 12(1):11831. PubMed ID: 35821402 [TBL] [Abstract][Full Text] [Related]
16. Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Khan MR; Li M; Mao S; Ali R; Khan S Sci Rep; 2021 Feb; 11(1):3691. PubMed ID: 33574375 [TBL] [Abstract][Full Text] [Related]
17. MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition. Raizah Z; Aly AM; Alsedais N; Mansour MA Sci Rep; 2021 Aug; 11(1):17151. PubMed ID: 34433847 [TBL] [Abstract][Full Text] [Related]
18. A numerical investigation of the heat transfer characteristics of water-based mango bark nanofluid flowing in a double-pipe heat exchanger. Onyiriuka EJ; Ighodaro OO; Adelaja AO; Ewim DRE; Bhattacharyya S Heliyon; 2019 Sep; 5(9):e02416. PubMed ID: 31538112 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the effect of rectangular winglet angles on turbulent flow and heat transfer of water/Cu nanofluid in a three-dimensional channel. Tavakoli MR; Akbari OA; Mohammadian A; Pourfattah F Heliyon; 2024 Aug; 10(16):e36482. PubMed ID: 39247324 [TBL] [Abstract][Full Text] [Related]
20. Investigation of Overlapped Twisted Tapes Inserted in a Double-Pipe Heat Exchanger Using Two-Phase Nanofluid. Ghalambaz M; Arasteh H; Mashayekhi R; Keshmiri A; Talebizadehsardari P; Yaïci W Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32846914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]