BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35145267)

  • 1. Morphological volatility precedes ecological innovation in early echinoderms.
    Novack-Gottshall PM; Sultan A; Smith NS; Purcell J; Hanson KE; Lively R; Ranjha I; Collins C; Parker R; Sumrall CD; Deline B
    Nat Ecol Evol; 2022 Mar; 6(3):263-272. PubMed ID: 35145267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cambrian origin but no early burst in functional disparity for Class Bivalvia.
    Zhou S; Edie SM; Collins KS; Crouch NMA; Jablonski D
    Biol Lett; 2023 May; 19(5):20230157. PubMed ID: 37254520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoupling of taxonomic diversity and morphological disparity during decline of the Cambrian trilobite family Pterocephaliidae.
    Hopkins MJ
    J Evol Biol; 2013 Aug; 26(8):1665-76. PubMed ID: 23701047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novelty and Innovation in the History of Life.
    Erwin DH
    Curr Biol; 2015 Oct; 25(19):R930-40. PubMed ID: 26439356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic evolutionary change in post-Paleozoic echinoids and the importance of scale when interpreting changes in rates of evolution.
    Hopkins MJ; Smith AB
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3758-63. PubMed ID: 25713369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new somasteroid from the Fezouata Lagerstätte in Morocco and the Early Ordovician origin of Asterozoa.
    Hunter AW; Ortega-Hernández J
    Biol Lett; 2021 Jan; 17(1):20200809. PubMed ID: 33465330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution and Development at the Origin of a Phylum.
    Deline B; Thompson JR; Smith NS; Zamora S; Rahman IA; Sheffield SL; Ausich WI; Kammer TW; Sumrall CD
    Curr Biol; 2020 May; 30(9):1672-1679.e3. PubMed ID: 32197083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras.
    LoDuca ST; Bykova N; Wu M; Xiao S; Zhao Y
    Geobiology; 2017 Jul; 15(4):588-616. PubMed ID: 28603844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.
    Rahman IA; Waters JA; Sumrall CD; Astolfo A
    Biol Lett; 2015 Oct; 11(10):. PubMed ID: 26510677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of metazoan morphological disparity.
    Deline B; Greenwood JM; Clark JW; Puttick MN; Peterson KJ; Donoghue PCJ
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):E8909-E8918. PubMed ID: 30181261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limited role of functional differentiation in early diversification of animals.
    Knope ML; Heim NA; Frishkoff LO; Payne JL
    Nat Commun; 2015 Mar; 6():6455. PubMed ID: 25737406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of spatial and environmental differentiation on early Palaeozoic marine biodiversity.
    Penny A; Kröger B
    Nat Ecol Evol; 2019 Dec; 3(12):1655-1660. PubMed ID: 31740841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oldest post-Palaeozoic Crinoid and Permian-Triassic origins of the Articulata (Echinodermata).
    Oji T; Twitchett RJ
    Zoolog Sci; 2015 Apr; 32(2):211-5. PubMed ID: 25826072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Liexi fauna: a new Lagerstätte from the Lower Ordovician of South China.
    Fang X; Mao Y; Liu Q; Yuan W; Chen Z; Wu R; Li L; Zhang Y; Ma J; Wang W; Zhan R; Peng S; Zhang Y; Huang D
    Proc Biol Sci; 2022 Jul; 289(1978):20221027. PubMed ID: 35858062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting Early Ordovician assembly patterns highlight the complex initial stages of the Ordovician Radiation.
    Saleh F; Guenser P; Gibert C; Balseiro D; Serra F; Waisfeld BG; Antcliffe JB; Daley AC; Mángano MG; Buatois LA; Ma X; Vizcaïno D; Lefebvre B
    Sci Rep; 2022 Mar; 12(1):3852. PubMed ID: 35264650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks.
    Mángano MG; Buatois LA
    Proc Biol Sci; 2014 Apr; 281(1780):20140038. PubMed ID: 24523279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Cabrières Biota (France) provides insights into Ordovician polar ecosystems.
    Saleh F; Lustri L; Gueriau P; Potin GJ; Pérez-Peris F; Laibl L; Jamart V; Vite A; Antcliffe JB; Daley AC; Nohejlová M; Dupichaud C; Schöder S; Bérard E; Lynch S; Drage HB; Vaucher R; Vidal M; Monceret E; Monceret S; Lefebvre B
    Nat Ecol Evol; 2024 Apr; 8(4):651-662. PubMed ID: 38337049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event.
    Buatois LA; Mángano MG; Olea RA; Wilson MA
    Proc Natl Acad Sci U S A; 2016 Jun; 113(25):6945-8. PubMed ID: 27247396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palaeoecology of Cambrian-Ordovician acritarchs from China: evidence for a progressive invasion of the marine habitats.
    Shan L; Yan K; Zhang Y; Li J; Servais T
    Philos Trans R Soc Lond B Biol Sci; 2022 Mar; 377(1847):20210035. PubMed ID: 35125001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trait-based diversification shifts reflect differential extinction among fossil taxa.
    Wagner PJ; Estabrook GF
    Proc Natl Acad Sci U S A; 2014 Nov; 111(46):16419-24. PubMed ID: 25331898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.