These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35145358)

  • 1. Noise reduction and mask removal neural network for X-ray single-particle imaging.
    Bellisario A; Maia FRNC; Ekeberg T
    J Appl Crystallogr; 2022 Feb; 55(Pt 1):122-132. PubMed ID: 35145358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent X-ray diffraction imaging of single particles: background impact on 3D reconstruction.
    Wollter A; Ekeberg T
    J Appl Crystallogr; 2024 Oct; 57(Pt 5):1384-1391. PubMed ID: 39387090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Metropolis Monte Carlo algorithm for merging single-particle diffraction intensities.
    Mobley BR; Schmidt KE; Chen JPJ; Kirian RA
    Acta Crystallogr A Found Adv; 2022 May; 78(Pt 3):200-211. PubMed ID: 35502712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sub-photon accuracy noise reduction of a single shot coherent diffraction pattern with an atomic model trained autoencoder.
    Ishikawa T; Takeo Y; Sakurai K; Yoshinaga K; Furuya N; Inubushi Y; Tono K; Joti Y; Yabashi M; Kimura T; Yoshimi K
    Opt Express; 2024 May; 32(10):18301-18316. PubMed ID: 38858990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SpeckleNN: a unified embedding for real-time speckle pattern classification in X-ray single-particle imaging with limited labeled examples.
    Wang C; Florin E; Chang HY; Thayer J; Yoon CH
    IUCrJ; 2023 Sep; 10(Pt 5):568-578. PubMed ID: 37458190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiple-common-lines method to determine the orientation of snapshot diffraction patterns from single particles.
    Zhou L; Zhang TY; Liu ZC; Liu P; Dong YH
    Acta Crystallogr A Found Adv; 2014 Jul; 70(Pt 4):364-72. PubMed ID: 25970194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Necessary Experimental Conditions for Single-Shot Diffraction Imaging of DNA-Based Structures with X-ray Free-Electron Lasers.
    Sun Z; Fan J; Li H; Liu H; Nam D; Kim C; Kim Y; Han Y; Zhang J; Yao S; Park J; Kim S; Tono K; Yabashi M; Ishikawa T; Song C; Fan C; Jiang H
    ACS Nano; 2018 Aug; 12(8):7509-7518. PubMed ID: 29986128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.
    Takayama Y; Inui Y; Sekiguchi Y; Kobayashi A; Oroguchi T; Yamamoto M; Matsunaga S; Nakasako M
    Plant Cell Physiol; 2015 Jul; 56(7):1272-86. PubMed ID: 25745031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation.
    Sekiguchi Y; Hashimoto S; Kobayashi A; Oroguchi T; Nakasako M
    J Synchrotron Radiat; 2017 Sep; 24(Pt 5):1024-1038. PubMed ID: 28862626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure determination using high-order spatial correlations in single-particle X-ray scattering.
    Zhao W; Miyashita O; Nakano M; Tama F
    IUCrJ; 2024 Jan; 11(Pt 1):92-108. PubMed ID: 38096036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorting algorithms for single-particle imaging experiments at X-ray free-electron lasers.
    Bobkov SA; Teslyuk AB; Kurta RP; Gorobtsov OY; Yefanov OM; Ilyin VA; Senin RA; Vartanyants IA
    J Synchrotron Radiat; 2015 Nov; 22(6):1345-52. PubMed ID: 26524297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised learning approaches to characterizing heterogeneous samples using X-ray single-particle imaging.
    Zhuang Y; Awel S; Barty A; Bean R; Bielecki J; Bergemann M; Daurer BJ; Ekeberg T; Estillore AD; Fangohr H; Giewekemeyer K; Hunter MS; Karnevskiy M; Kirian RA; Kirkwood H; Kim Y; Koliyadu J; Lange H; Letrun R; Lübke J; Mall A; Michelat T; Morgan AJ; Roth N; Samanta AK; Sato T; Shen Z; Sikorski M; Schulz F; Spence JCH; Vagovic P; Wollweber T; Worbs L; Xavier PL; Yefanov O; Maia FRNC; Horke DA; Küpper J; Loh ND; Mancuso AP; Chapman HN; Ayyer K
    IUCrJ; 2022 Mar; 9(Pt 2):204-214. PubMed ID: 35371510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Considerations for three-dimensional image reconstruction from experimental data in coherent diffractive imaging.
    Lundholm IV; Sellberg JA; Ekeberg T; Hantke MF; Okamoto K; van der Schot G; Andreasson J; Barty A; Bielecki J; Bruza P; Bucher M; Carron S; Daurer BJ; Ferguson K; Hasse D; Krzywinski J; Larsson DSD; Morgan A; Mühlig K; Müller M; Nettelblad C; Pietrini A; Reddy HKN; Rupp D; Sauppe M; Seibert M; Svenda M; Swiggers M; Timneanu N; Ulmer A; Westphal D; Williams G; Zani A; Faigel G; Chapman HN; Möller T; Bostedt C; Hajdu J; Gorkhover T; Maia FRNC
    IUCrJ; 2018 Sep; 5(Pt 5):531-541. PubMed ID: 30224956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovering magnetization distributions from their noisy diffraction data.
    Loh NT; Eisebitt S; Flewett S; Elser V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061128. PubMed ID: 21230665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coarse-Grained Diffraction Template Matching Model to Retrieve Multiconformational Models for Biomolecule Structures from Noisy Diffraction Patterns.
    Tokuhisa A; Kanada R; Chiba S; Terayama K; Isaka Y; Ma B; Kamiya N; Okuno Y
    J Chem Inf Model; 2020 Jun; 60(6):2803-2818. PubMed ID: 32469517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed classification of coherent X-ray diffraction patterns on the K computer for high-resolution single biomolecule imaging.
    Tokuhisa A; Arai J; Joti Y; Ohno Y; Kameyama T; Yamamoto K; Hatanaka M; Gerofi B; Shimada A; Kurokawa M; Shoji F; Okada K; Sugimoto T; Yamaga M; Tanaka R; Yokokawa M; Hori A; Ishikawa Y; Hatsui T; Go N
    J Synchrotron Radiat; 2013 Nov; 20(Pt 6):899-904. PubMed ID: 24121336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predicted model-aided reconstruction algorithm for X-ray free-electron laser single-particle imaging.
    Jiao Z; He Y; Fu X; Zhang X; Geng Z; Ding W
    IUCrJ; 2024 Jul; 11(Pt 4):602-619. PubMed ID: 38904548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classification of projection images of proteins with structural polymorphism by manifold: a simulation study for x-ray free-electron laser diffraction imaging.
    Yoshidome T; Oroguchi T; Nakasako M; Ikeguchi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032710. PubMed ID: 26465501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.
    Hirose M; Shimomura K; Suzuki A; Burdet N; Takahashi Y
    Opt Express; 2016 May; 24(11):11917-25. PubMed ID: 27410114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.
    Jungmann-Smith JH; Bergamaschi A; Brückner M; Cartier S; Dinapoli R; Greiffenberg D; Huthwelker T; Maliakal D; Mayilyan D; Medjoubi K; Mezza D; Mozzanica A; Ramilli M; Ruder Ch; Schädler L; Schmitt B; Shi X; Tinti G
    J Synchrotron Radiat; 2016 Mar; 23(2):385-94. PubMed ID: 26917124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.