These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35145573)

  • 21. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2.
    Rigosi AF; Hill HM; Li Y; Chernikov A; Heinz TF
    Nano Lett; 2015 Aug; 15(8):5033-8. PubMed ID: 26186085
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exciton Formation Entropy Changes in Transition Metal Dichalcogenide Atomic Layers.
    Rice Q; Tabibi B; Seo FJ
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2018-2020. PubMed ID: 29448703
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The optical response of monolayer, few-layer and bulk tungsten disulfide.
    Molas MR; Nogajewski K; Slobodeniuk AO; Binder J; Bartos M; Potemski M
    Nanoscale; 2017 Sep; 9(35):13128-13141. PubMed ID: 28849844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of charge-transfer excitons in a transition metal dichalcogenide heterostructure.
    Bian A; He D; Hao S; Fu Y; Zhang L; He J; Wang Y; Zhao H
    Nanoscale; 2020 Apr; 12(15):8485-8492. PubMed ID: 32242201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.
    Dhakal KP; Duong DL; Lee J; Nam H; Kim M; Kan M; Lee YH; Kim J
    Nanoscale; 2014 Nov; 6(21):13028-35. PubMed ID: 25247614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing Excitons, Trions, and Dark Excitons in Monolayer WS
    McDonnell LP; Huang CC; Cui Q; Hewak DW; Smith DC
    Nano Lett; 2018 Feb; 18(2):1428-1434. PubMed ID: 29297693
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temperature-Dependent Two-Dimensional Transition Metal Dichalcogenide Heterostructures: Controlled Synthesis and Their Properties.
    Chen F; Wang L; Ji X; Zhang Q
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30821-30831. PubMed ID: 28814077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoinduced Bandgap Renormalization and Exciton Binding Energy Reduction in WS
    Cunningham PD; Hanbicki AT; McCreary KM; Jonker BT
    ACS Nano; 2017 Dec; 11(12):12601-12608. PubMed ID: 29227085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures.
    Chen H; Wen X; Zhang J; Wu T; Gong Y; Zhang X; Yuan J; Yi C; Lou J; Ajayan PM; Zhuang W; Zhang G; Zheng J
    Nat Commun; 2016 Aug; 7():12512. PubMed ID: 27539942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy.
    Hill HM; Rigosi AF; Roquelet C; Chernikov A; Berkelbach TC; Reichman DR; Hybertsen MS; Brus LE; Heinz TF
    Nano Lett; 2015 May; 15(5):2992-7. PubMed ID: 25816155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observation of double indirect interlayer exciton in WSe
    Yu J; Kuang X; Zhong J; Cao L; Zeng C; Ding J; Cong C; Wang S; Dai P; Yue X; Liu Z; Liu Y
    Opt Express; 2020 Apr; 28(9):13260-13268. PubMed ID: 32403803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of uniform single layer WS
    Park J; Kim MS; Cha E; Kim J; Choi W
    Sci Rep; 2017 Nov; 7(1):16121. PubMed ID: 29170514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining the Optimized Interlayer Separation Distance in Vertical Stacked 2D WS
    Xu W; Kozawa D; Liu Y; Sheng Y; Wei K; Koman VB; Wang S; Wang X; Jiang T; Strano MS; Warner JH
    Small; 2018 Mar; 14(13):e1703727. PubMed ID: 29411935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced Binding Energy and Layer-Dependent Exciton Dynamics in Monolayer and Multilayer WS
    Liu Y; Hu X; Wang T; Liu D
    ACS Nano; 2019 Dec; 13(12):14416-14425. PubMed ID: 31825594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spontaneous Formation of Atomically Thin Stripes in Transition Metal Dichalcogenide Monolayers.
    Azizi A; Wang Y; Lin Z; Wang K; Elias AL; Terrones M; Crespi VH; Alem N
    Nano Lett; 2016 Nov; 16(11):6982-6987. PubMed ID: 27673342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide.
    Carozo V; Wang Y; Fujisawa K; Carvalho BR; McCreary A; Feng S; Lin Z; Zhou C; Perea-López N; Elías AL; Kabius B; Crespi VH; Terrones M
    Sci Adv; 2017 Apr; 3(4):e1602813. PubMed ID: 28508048
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure.
    Ceballos F; Bellus MZ; Chiu HY; Zhao H
    ACS Nano; 2014 Dec; 8(12):12717-24. PubMed ID: 25402669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers.
    Yu Y; Yu Y; Huang L; Peng H; Xiong L; Cao L
    Nano Lett; 2017 Jun; 17(6):3613-3618. PubMed ID: 28505462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning the Fröhlich exciton-phonon scattering in monolayer MoS
    Miller B; Lindlau J; Bommert M; Neumann A; Yamaguchi H; Holleitner A; Högele A; Wurstbauer U
    Nat Commun; 2019 Feb; 10(1):807. PubMed ID: 30778074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.