These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35145730)

  • 1. Functional evolution of visual involvement in experimental autoimmune encephalomyelitis.
    Marenna S; Huang SC; Castoldi V; d'Isa R; Costa GD; Comi G; Leocani L
    Mult Scler J Exp Transl Clin; 2020; 6(4):2055217320963474. PubMed ID: 35145730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive visual evoked potentials to assess optic nerve involvement in the dark agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein.
    Castoldi V; Marenna S; d'Isa R; Huang SC; De Battista D; Chirizzi C; Chaabane L; Kumar D; Boschert U; Comi G; Leocani L
    Brain Pathol; 2020 Jan; 30(1):137-150. PubMed ID: 31267597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring experimental autoimmune optic neuritis using multimodal imaging.
    Manogaran P; Walker-Egger C; Samardzija M; Waschkies C; Grimm C; Rudin M; Schippling S
    Neuroimage; 2018 Jul; 175():327-339. PubMed ID: 29627590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcranial direct current stimulation as a preventive treatment in multiple sclerosis? Preclinical evidence.
    Marenna S; Huang SC; Rossi E; Castoldi V; Comi G; Leocani L
    Exp Neurol; 2022 Nov; 357():114201. PubMed ID: 35963325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alleviation of extensive visual pathway dysfunction by a remyelinating drug in a chronic mouse model of multiple sclerosis.
    Sekyi MT; Lauderdale K; Atkinson KC; Golestany B; Karim H; Feri M; Soto JS; Diaz C; Kim SH; Cilluffo M; Nusinowitz S; Katzenellenbogen JA; Tiwari-Woodruff SK
    Brain Pathol; 2021 Mar; 31(2):312-332. PubMed ID: 33368801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of Visual System Biomarkers With Motor Deficits in Experimental Autoimmune Encephalomyelitis-Optic Neuritis.
    Elwood BW; Godwin CR; Anders JJ; Kardon RH; Gramlich OW
    Transl Vis Sci Technol; 2024 Aug; 13(8):1. PubMed ID: 39087931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of Nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis.
    Larabee CM; Desai S; Agasing A; Georgescu C; Wren JD; Axtell RC; Plafker SM
    Mol Vis; 2016; 22():1503-1513. PubMed ID: 28050123
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological and Histological Correlations of Optic Neuritis in the Dark Agouti Rat Model of Experimental Autoimmune Encephalomyelitis.
    Lotan I; Nishiyama S; Wright A; Myoung Seok J; Levy M
    Neuroscience; 2023 Aug; 524():89-93. PubMed ID: 37290683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent effect of myelin oligodendrocyte glycoprotein on visual function and optic nerve damage in experimental autoimmune encephalomyelitis.
    Castoldi V; Marenna S; Huang SC; d'Isa R; Chaabane L; Comi G; Leocani L
    J Neurosci Res; 2022 Mar; 100(3):855-868. PubMed ID: 35043454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model.
    Wilmes AT; Reinehr S; Kühn S; Pedreiturria X; Petrikowski L; Faissner S; Ayzenberg I; Stute G; Gold R; Dick HB; Kleiter I; Joachim SC
    J Neuroinflammation; 2018 Jun; 15(1):183. PubMed ID: 29903027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring retinal changes with optical coherence tomography predicts neuronal loss in experimental autoimmune encephalomyelitis.
    Cruz-Herranz A; Dietrich M; Hilla AM; Yiu HH; Levin MH; Hecker C; Issberner A; Hallenberger A; Cordano C; Lehmann-Horn K; Balk LJ; Aktas O; Ingwersen J; von Gall C; Hartung HP; Zamvil SS; Fischer D; Albrecht P; Green AJ
    J Neuroinflammation; 2019 Nov; 16(1):203. PubMed ID: 31684959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo detection of experimental optic neuritis by pupillometry.
    Shindler KS; Revere K; Dutt M; Ying GS; Chung DC
    Exp Eye Res; 2012 Jul; 100():1-6. PubMed ID: 22561341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optic neuritis and retinal ganglion cell loss in a chronic murine model of multiple sclerosis.
    Quinn TA; Dutt M; Shindler KS
    Front Neurol; 2011; 2():50. PubMed ID: 21852980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Treg/Th17 Cell Imbalance and Neuronal Damage in the Visual Dysfunction Observed in Experimental Autoimmune Optic Neuritis Chronologically.
    Liu Y; You C; Zhang Z; Zhang J; Yan H
    Neuromolecular Med; 2015 Dec; 17(4):391-403. PubMed ID: 26318182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations of peripheral nerve excitability in an experimental autoimmune encephalomyelitis mouse model for multiple sclerosis.
    Teixeira NB; Picolo G; Giardini AC; Boumezbeur F; Pottier G; Kuhnast B; Servent D; Benoit E
    J Neuroinflammation; 2020 Sep; 17(1):266. PubMed ID: 32894170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography and visual evoked potential and its relationship with neurological disability in patients with relapsing-remitting multiple sclerosis.
    Piedrabuena R; Bittar M
    Mult Scler Relat Disord; 2022 Jan; 57():103420. PubMed ID: 34906813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differing Structural and Functional Patterns of Optic Nerve Damage in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder.
    Shen T; You Y; Arunachalam S; Fontes A; Liu S; Gupta V; Parratt J; Wang C; Barnett M; Barton J; Chitranshi N; Zhu L; Fraser CL; Graham SL; Klistorner A; Yiannikas C
    Ophthalmology; 2019 Mar; 126(3):445-453. PubMed ID: 30060979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential phases of RGC axonal and somatic injury in EAE mice examined using DTI and OCT.
    Nishioka C; Liang HF; Barsamian B; Sun SW
    Mult Scler Relat Disord; 2019 Jan; 27():315-323. PubMed ID: 30469023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis.
    Prinz J; Karacivi A; Stormanns ER; Recks MS; Kuerten S
    PLoS One; 2015; 10(12):e0144847. PubMed ID: 26658811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in stiffness of the optic nerve and involvement of neurofilament light chains in the course of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis.
    Pyka-Fościak G; Fościak M; Pabijan J; Lis GJ; Litwin JA; Lekka M
    Biochim Biophys Acta Mol Basis Dis; 2023 Oct; 1869(7):166796. PubMed ID: 37400000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.