These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 3514580)

  • 1. Valinomycin-induced cation transport in vesicles does not reflect the activity of K+ transport systems in Escherichia coli.
    Altendorf K; Epstein W; Löhmann A
    J Bacteriol; 1986 Apr; 166(1):334-7. PubMed ID: 3514580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Valinomycin-induced uptake of potassium in membrane vesicles from Escherichia coli.
    Bhattacharyya P; Epstein W; Silver S
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1488-92. PubMed ID: 4934520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation by small hydrophobic molecules of valinomycin-mediated potassium transport across phospholipid vesicle membranes.
    Clement NR; Gould MJ
    Biochemistry; 1981 Mar; 20(6):1539-43. PubMed ID: 6261799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of active transport in isolated bacterial membrane vesicles. 8. Valinomycin-induced rubidium transport.
    Lombardi FJ; Reeves JP; Kaback HR
    J Biol Chem; 1973 May; 248(10):3551-65. PubMed ID: 4573982
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli.
    Hirata H; Altendorf K; Harold FM
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1804-8. PubMed ID: 4578444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport in isolated bacterial membrane vesicles.
    Kaback HR
    Methods Enzymol; 1974; 31():698-709. PubMed ID: 4609121
    [No Abstract]   [Full Text] [Related]  

  • 9. Functional symmetry of the beta-galactoside carrier in Escherichia coli.
    Teather RM; Hamelin O; Schwarz H; Overath P
    Biochim Biophys Acta; 1977 Jun; 467(3):386-95. PubMed ID: 328041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cation-dependent uptake of zinc in human fibroblasts.
    Ackland ML; McArdle HJ
    Biometals; 1996 Jan; 9(1):29-37. PubMed ID: 8574091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles.
    Lombardi FJ; Reeves JP; Short SA; Kaback HR
    Ann N Y Acad Sci; 1974 Feb; 227():312-27. PubMed ID: 4363926
    [No Abstract]   [Full Text] [Related]  

  • 12. The use of K+ diffusion gradients to support transport by Escherichia coli membrane vesicles.
    Hirata H
    Methods Enzymol; 1979; 55():676-80. PubMed ID: 379504
    [No Abstract]   [Full Text] [Related]  

  • 13. Transport mechanism of glutamate by hypotonic-treated glial plasmalemmal vesicles from rat hippocampus. Effects of concentration gradients of Na+ and K+ and of ionophores.
    Nakamura Y; Kataoka K
    J Mol Neurosci; 1993; 4(4):255-62. PubMed ID: 7917834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 15. K-Cl transport systems in rabbit renal basolateral membrane vesicles.
    Eveloff J; Warnock DG
    Am J Physiol; 1987 May; 252(5 Pt 2):F883-9. PubMed ID: 3578533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valinomycin-induced iodide leakage without impairment in sodium-dependent iodide transport in the thyroid.
    Saito K; Yamamoto K; Takai T; Yoshida S
    Endocrinology; 1983 Sep; 113(3):1031-5. PubMed ID: 6872949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for membrane potential in active transport of glutamine by Escherichia coli.
    Plate CA
    J Bacteriol; 1979 Jan; 137(1):221-5. PubMed ID: 153897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for altered ion transport in Saccharomyces cerevisiae overexpressing human MDR 1 protein.
    Fritz F; Howard EM; Hoffman MM; Roepe PD
    Biochemistry; 1999 Mar; 38(13):4214-26. PubMed ID: 10194338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-driven potassium transport in right-side-out membrane vesicles via the Kdp system of Escherichia coli.
    Kollmann R; Altendorf K
    Biochim Biophys Acta; 1993 Jun; 1143(1):62-6. PubMed ID: 8499455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active transport in bacterial cytoplasmic membrane vesicles.
    Kaback HR
    Symp Soc Exp Biol; 1973; 27():145-74. PubMed ID: 4594375
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.