BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35145855)

  • 1. Thermodynamics contributes to high limonene productivity in cyanobacteria.
    Shinde S; Singapuri S; Jiang Z; Long B; Wilcox D; Klatt C; Jones JA; Yuan JS; Wang X
    Metab Eng Commun; 2022 Jun; 14():e00193. PubMed ID: 35145855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.
    Wang X; Liu W; Xin C; Zheng Y; Cheng Y; Sun S; Li R; Zhu XG; Dai SY; Rentzepis PM; Yuan JS
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14225-14230. PubMed ID: 27911807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced limonene production in a fast-growing cyanobacterium through combinatorial metabolic engineering.
    Lin PC; Zhang F; Pakrasi HB
    Metab Eng Commun; 2021 Jun; 12():e00164. PubMed ID: 33659180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering cyanobacteria for production of terpenoids.
    Lin PC; Pakrasi HB
    Planta; 2019 Jan; 249(1):145-154. PubMed ID: 30465115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.
    Davies FK; Work VH; Beliaev AS; Posewitz MC
    Front Bioeng Biotechnol; 2014; 2():21. PubMed ID: 25152894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Reduced and Enhanced Glycogen Pools on Salt-Induced Sucrose Production in a Sucrose-Secreting Strain of Synechococcus elongatus PCC 7942.
    Qiao C; Duan Y; Zhang M; Hagemann M; Luo Q; Lu X
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942.
    Hirokawa Y; Goto R; Umetani Y; Hanai T
    J Biosci Bioeng; 2017 Jul; 124(1):54-61. PubMed ID: 28325659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining metabolite doping and metabolic engineering to improve 2-phenylethanol production by engineered cyanobacteria.
    Usai G; Cordara A; Re A; Polli MF; Mannino G; Bertea CM; Fino D; Pirri CF; Menin B
    Front Bioeng Biotechnol; 2022; 10():1005960. PubMed ID: 36204466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering cyanobacteria for converting carbon dioxide into isomaltulose.
    Wu Y; Sun J; Xu X; Mao S; Luan G; Lu X
    J Biotechnol; 2023 Feb; 364():1-4. PubMed ID: 36702257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Potential of the Model Cyanobacteria
    Chenebault C; Blanc-Garin V; Vincent M; Diaz-Santos E; Goudet A; Cassier-Chauvat C; Chauvat F
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria.
    Lai MJ; Tsai JC; Lan EI
    Bioresour Technol; 2022 Dec; 366():128131. PubMed ID: 36252759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology.
    Yadav I; Rautela A; Kumar S
    World J Microbiol Biotechnol; 2021 Oct; 37(12):201. PubMed ID: 34664124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of carbon metabolism in Synechococcus elongatus PCC 7942 by cyanophage-derived sigma factors for bioproduction improvement.
    Sawa N; Tatsuke T; Ogawa A; Hirokawa Y; Osanai T; Hanai T
    J Biosci Bioeng; 2019 Feb; 127(2):256-264. PubMed ID: 30150148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of a fast-growing cyanobacterium
    Sengupta S; Jaiswal D; Sengupta A; Shah S; Gadagkar S; Wangikar PP
    Biotechnol Biofuels; 2020; 13():89. PubMed ID: 32467730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic 1,8-cineole production using cyanobacteria.
    Sakamaki Y; Ono M; Shigenari N; Chibazakura T; Shimomura K; Watanabe S
    Biosci Biotechnol Biochem; 2023 Apr; 87(5):563-568. PubMed ID: 36810583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic sink engineering in cyanobacteria: Perspectives and applications.
    Bongirwar R; Shukla P
    Bioresour Technol; 2023 Jul; 379():128974. PubMed ID: 36990331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions.
    Hirokawa Y; Dempo Y; Fukusaki E; Hanai T
    J Biosci Bioeng; 2017 Jan; 123(1):39-45. PubMed ID: 27613406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased Photochemical Efficiency in Cyanobacteria via an Engineered Sucrose Sink.
    Abramson BW; Kachel B; Kramer DM; Ducat DC
    Plant Cell Physiol; 2016 Dec; 57(12):2451-2460. PubMed ID: 27742883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rerouting of carbon flux in a glycogen mutant of cyanobacteria assessed via isotopically non-stationary
    Hendry JI; Prasannan C; Ma F; Möllers KB; Jaiswal D; Digmurti M; Allen DK; Frigaard NU; Dasgupta S; Wangikar PP
    Biotechnol Bioeng; 2017 Oct; 114(10):2298-2308. PubMed ID: 28600876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the Expression of Glycogen Phosphorylase in
    Dan Y; Sun J; Zhang S; Wu Y; Mao S; Luan G; Lu X
    Front Bioeng Biotechnol; 2022; 10():925311. PubMed ID: 35845416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.