These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35145880)

  • 1. Chemical and toxicological characterisation of residues from offshore in-situ burning of spilled fuel oils.
    Faksness LG; Altin D; Dolva H; Nordtug T
    Toxicol Rep; 2022; 9():163-170. PubMed ID: 35145880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Offshore field experiments with in-situ burning of oil: Emissions and burn efficiency.
    Faksness LG; Leirvik F; Taban IC; Engen F; Jensen HV; Holbu JW; Dolva H; Bråtveit M
    Environ Res; 2022 Apr; 205():112419. PubMed ID: 34822858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short and long-term effects of low-sulphur fuels on marine zooplankton communities.
    Jönander C; Dahllöf I
    Aquat Toxicol; 2020 Oct; 227():105592. PubMed ID: 32891020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative toxicity assessment of in situ burn residues to initial and dispersed heavy fuel oil using zebrafish embryos as test organisms.
    Johann S; Goßen M; Mueller L; Selja V; Gustavson K; Fritt-Rasmussen J; Wegeberg S; Ciesielski TM; Jenssen BM; Hollert H; Seiler TB
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16198-16213. PubMed ID: 33269444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple protocol for estimating the acute toxicity of unresolved polar compounds from field-weathered oils.
    Sørensen L; Størseth TR; Altin D; Nordtug T; Faksness LG; Hansen BH
    Toxicol Mech Methods; 2024 Mar; 34(3):245-255. PubMed ID: 38375852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in Chemical Composition and Copepod Toxicity during Petroleum Photo-oxidation.
    Katz SD; Chen H; Fields DM; Beirne EC; Keyes P; Drozd GT; Aeppli C
    Environ Sci Technol; 2022 May; 56(9):5552-5562. PubMed ID: 35435676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical composition and acute toxicity in the water after in situ burning--a laboratory experiment.
    Faksness LG; Hansen BH; Altin D; Brandvik PJ
    Mar Pollut Bull; 2012 Jan; 64(1):49-55. PubMed ID: 22112284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of chemical herders do not increase acute crude oil toxicity to cold-water marine species.
    Hansen BH; Nordtug T; Øverjordet IB; Altin D; Farkas J; Daling PS; Sørheim KR; Faksness LG
    Sci Total Environ; 2022 Jun; 823():153779. PubMed ID: 35150678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical comparison and acute toxicity of water accommodated fraction (WAF) of source and field collected Macondo oils from the Deepwater Horizon spill.
    Faksness LG; Altin D; Nordtug T; Daling PS; Hansen BH
    Mar Pollut Bull; 2015 Feb; 91(1):222-9. PubMed ID: 25534626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a biological multilevel response approach in the copepod Acartia tonsa for toxicity testing of three oil Water Accommodated Fractions.
    Hafez T; Bilbao D; Etxebarria N; Duran R; Ortiz-Zarragoitia M
    Mar Environ Res; 2021 Jul; 169():105378. PubMed ID: 34102532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of dissolved and particulate phases of water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon natural resource damage assessment.
    Forth HP; Mitchelmore CL; Morris JM; Lay CR; Lipton J
    Environ Toxicol Chem; 2017 Jun; 36(6):1460-1472. PubMed ID: 28328044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of artificially weathered Macondo oil with field samples and evidence that weathering does not increase environmental acute toxicity.
    Faksness LG; Altin D; Størseth TR; Nordtug T; Hansen BH
    Mar Environ Res; 2020 May; 157():104928. PubMed ID: 32275510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing fuel spill risks in polar waters: Temporal dynamics and behaviour of hydrocarbons from Antarctic diesel, marine gas oil and residual fuel oil.
    Brown KE; King CK; Kotzakoulakis K; George SC; Harrison PL
    Mar Pollut Bull; 2016 Sep; 110(1):343-353. PubMed ID: 27389459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of oil and water accommodated fractions used to conduct aquatic toxicity testing in support of the Deepwater Horizon oil spill natural resource damage assessment.
    Forth HP; Mitchelmore CL; Morris JM; Lipton J
    Environ Toxicol Chem; 2017 Jun; 36(6):1450-1459. PubMed ID: 27805278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of crude oil and field-generated burned oil residue on Northern shrimp (Pandalus borealis) larvae.
    Keitel-Gröner F; Bechmann RK; Engen F; Lyng E; Taban IC; Baussant T
    Mar Environ Res; 2021 Jun; 168():105314. PubMed ID: 33839401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of Petroleum Fuels on Fertilization and Development of the Antarctic Sea Urchin Sterechinus neumayeri.
    Brown KE; King CK; Harrison PL
    Environ Toxicol Chem; 2020 Dec; 39(12):2527-2539. PubMed ID: 32946126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dispersant application on the toxicity to sea urchin embryos of crude and bunker oils representative of prospective oil spill threats in Arctic and Sub-Arctic seas.
    DeMiguel-Jiménez L; Etxebarria N; Lekube X; Izagirre U; Marigómez I
    Mar Pollut Bull; 2021 Nov; 172():112922. PubMed ID: 34523425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of Water Accommodated Fractions of Estonian Shale Fuel Oils to Aquatic Organisms.
    Blinova I; Kanarbik L; Sihtmäe M; Kahru A
    Arch Environ Contam Toxicol; 2016 Feb; 70(2):383-91. PubMed ID: 26590906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of fuel oil water accommodated fractions on two marine microalgae, Skeletonema costatum and Chlorela spp.
    Chao M; Shen X; Lun F; Shen A; Yuan Q
    Bull Environ Contam Toxicol; 2012 May; 88(5):712-6. PubMed ID: 22349279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ burning of oil in coastal marshes. 2. Oil spill cleanup efficiency as a function of oil type, marsh type, and water depth.
    Lin Q; Mendelssohn IA; Carney K; Miles SM; Bryner NP; Walton WD
    Environ Sci Technol; 2005 Mar; 39(6):1855-60. PubMed ID: 15819247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.