These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 35146395)

  • 1. Flexible organic optoelectronic devices on paper.
    Pan T; Liu S; Zhang L; Xie W
    iScience; 2022 Feb; 25(2):103782. PubMed ID: 35146395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Molybdenum Disulfide (MoS
    Singh E; Singh P; Kim KS; Yeom GY; Nalwa HS
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11061-11105. PubMed ID: 30830744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicone Materials for Flexible Optoelectronic Devices.
    Miroshnichenko AS; Neplokh V; Mukhin IS; Islamova RM
    Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics.
    Chang S; Koo JH; Yoo J; Kim MS; Choi MK; Kim DH; Song YM
    Chem Rev; 2024 Feb; 124(3):768-859. PubMed ID: 38241488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Optoelectronic Materials: Mechanisms and Applications.
    Ostroverkhova O
    Chem Rev; 2016 Nov; 116(22):13279-13412. PubMed ID: 27723323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices.
    Qiao W; Huang W; Liu Y; Li X; Chen LS; Tang JX
    Adv Mater; 2016 Dec; 28(47):10353-10380. PubMed ID: 27976840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments of truly stretchable thin film electronic and optoelectronic devices.
    Zhao J; Chi Z; Yang Z; Chen X; Arnold MS; Zhang Y; Xu J; Chi Z; Aldred MP
    Nanoscale; 2018 Mar; 10(13):5764-5792. PubMed ID: 29542765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paper in Electronic and Optoelectronic Devices.
    Ha D; Zhitenev NB; Fang Z
    Adv Electron Mater; 2018; 4():. PubMed ID: 31093483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flexible, multifunctional, optoelectronic anticounterfeiting device from high-performance organic light-emitting paper.
    Pan T; Liu S; Zhang L; Xie W; Yu C
    Light Sci Appl; 2022 Mar; 11(1):59. PubMed ID: 35288540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent synthetic strategies of small heterocyclic organic molecules with optoelectronic applications: a review.
    Iftikhar R; Khan FZ; Naeem N
    Mol Divers; 2024 Feb; 28(1):271-307. PubMed ID: 36609738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thieno[3,4-b]thiophene-Based Novel Small-Molecule Optoelectronic Materials.
    Zhang C; Zhu X
    Acc Chem Res; 2017 Jun; 50(6):1342-1350. PubMed ID: 28375613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices.
    Dong H; Wu Z; Jiang Y; Liu W; Li X; Jiao B; Abbas W; Hou X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31212-31221. PubMed ID: 27790912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications.
    Qiu T; Akinoglu EM; Luo B; Konarova M; Yun JH; Gentle IR; Wang L
    Adv Mater; 2022 May; 34(19):e2103842. PubMed ID: 35119141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose-based Translucent Diffuser for Optoelectronic Device Applications with Dramatic Improvement of Light Coupling.
    Wu W; Tassi NG; Zhu H; Fang Z; Hu L
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26860-4. PubMed ID: 26572592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics.
    Lee MY; Lee HR; Park CH; Han SG; Oh JH
    Acc Chem Res; 2018 Nov; 51(11):2829-2838. PubMed ID: 30403337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perspectives on Development of Optoelectronic Materials in Artificial Intelligence Age.
    Yuan T; Song X; Shi Y; Wei S; Han Y; Yang L; Zhang Y; Li X; Li Y; Shen L; Fan L
    Chem Asian J; 2024 Mar; 19(6):e202301088. PubMed ID: 38317532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics.
    Im HG; Jung SH; Jin J; Lee D; Lee J; Lee D; Lee JY; Kim ID; Bae BS
    ACS Nano; 2014 Oct; 8(10):10973-9. PubMed ID: 25211125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications.
    Lu S; Franklin AD
    Nanoscale; 2020 Dec; 12(46):23371-23390. PubMed ID: 33216106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices.
    Sun L; Wang J; Matsui H; Lee S; Wang W; Guo S; Chen H; Fang K; Ito Y; Inoue D; Hashizume D; Mori K; Takakuwa M; Lee S; Zhou Y; Yokota T; Fukuda K; Someya T
    Sci Adv; 2024 Apr; 10(15):eadk9460. PubMed ID: 38598623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.