BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35146861)

  • 1. Engineering Formaldehyde Dehydrogenase from Pseudomonas putida to Favor Nicotinamide Cytosine Dinucleotide.
    Wang J; Guo X; Wan L; Liu Y; Xue H; Zhao ZK
    Chembiochem; 2022 Apr; 23(7):e202100697. PubMed ID: 35146861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering d-Lactate Dehydrogenase to Favor an Non-natural Cofactor Nicotinamide Cytosine Dinucleotide.
    Liu Y; Li Q; Wang L; Guo X; Wang J; Wang Q; Zhao ZK
    Chembiochem; 2020 Jul; 21(14):1972-1975. PubMed ID: 32175634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive inhibition of a non-natural cofactor dependent formaldehyde dehydrogenase by imidazole.
    Wang J; Wan L; Guo X; Wang X; Zhao ZK
    Biotechnol Lett; 2023 Jun; 45(5-6):679-687. PubMed ID: 37071383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Insights into Malic Enzyme Variants Favoring an Unnatural Redox Cofactor.
    Liu Y; Guo X; Liu W; Wang J; Kent Zhao Z
    Chembiochem; 2021 May; 22(10):1765-1768. PubMed ID: 33523590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-Guided Design of Formate Dehydrogenase for Regeneration of a Non-Natural Redox Cofactor.
    Guo X; Wang X; Liu Y; Li Q; Wang J; Liu W; Zhao ZK
    Chemistry; 2020 Dec; 26(70):16611-16615. PubMed ID: 32815230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide.
    Wang X; Feng Y; Guo X; Wang Q; Ning S; Li Q; Wang J; Wang L; Zhao ZK
    Nat Commun; 2021 Apr; 12(1):2116. PubMed ID: 33837188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of the cofactor specificity of wild-type phosphite dehydrogenase and its mutant using molecular dynamics simulations.
    Liu K; Wang M; Zhou Y; Wang H; Liu Y; Han L; Han W
    RSC Adv; 2021 Apr; 11(24):14527-14533. PubMed ID: 35424015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of formaldehyde dehydrogenase from Pseudomonas putida: the structural origin of the tightly bound cofactor in nicotinoprotein dehydrogenases.
    Tanaka N; Kusakabe Y; Ito K; Yoshimoto T; Nakamura KT
    J Mol Biol; 2002 Nov; 324(3):519-33. PubMed ID: 12445786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of formaldehyde dehydrogenase from Pseudomonas aeruginosa: the binary complex with the cofactor NAD+.
    Liao Y; Chen S; Wang D; Zhang W; Wang S; Ding J; Wang Y; Cai L; Ran X; Wang X; Zhu H
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Sep; 69(Pt 9):967-72. PubMed ID: 23989142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide.
    Ji D; Wang L; Hou S; Liu W; Wang J; Wang Q; Zhao ZK
    J Am Chem Soc; 2011 Dec; 133(51):20857-62. PubMed ID: 22098020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A phosphite-based screening platform for identification of enzymes favoring nonnatural cofactors.
    Liu Y; Li Z; Guo X; Wang X; Zhao ZK
    Sci Rep; 2022 Jul; 12(1):12484. PubMed ID: 35864126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core and auxiliary functions of one-carbon metabolism in
    Turlin J; Puiggené Ò; Donati S; Wirth NT; Nikel PI
    mSystems; 2023 Jun; 8(3):e0000423. PubMed ID: 37273222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The refined crystal structure of Pseudomonas putida lipoamide dehydrogenase complexed with NAD+ at 2.45 A resolution.
    Mattevi A; Obmolova G; Sokatch JR; Betzel C; Hol WG
    Proteins; 1992 Aug; 13(4):336-51. PubMed ID: 1325638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.
    Kudo H; Suzuki Y; Gessei T; Takahashi D; Arakawa T; Mitsubayashi K
    Biosens Bioelectron; 2010 Oct; 26(2):854-8. PubMed ID: 20810270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different types of formaldehyde-oxidizing dehydrogenases in Nocardia species 239: purification and characterization of an NAD-dependent aldehyde dehydrogenase.
    Van Ophem PW; Duine JA
    Arch Biochem Biophys; 1990 Nov; 282(2):248-53. PubMed ID: 2241149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Structural and functional analysis of enzymes and their application to clinical analysis--study on Pseudomonas putida formaldehyde dehydrogenase].
    Ito K
    Yakugaku Zasshi; 2002 Oct; 122(10):805-11. PubMed ID: 12400161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth.
    Ras J; Van Ophem PW; Reijnders WN; Van Spanning RJ; Duine JA; Stouthamer AH; Harms N
    J Bacteriol; 1995 Jan; 177(1):247-51. PubMed ID: 7798140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formaldehyde dehydrogenase from Pseudomonas putida. Purification and some properties.
    Ando M; Yoshimoto T; Ogushi S; Rikitake K; Shibata S; Tsuru D
    J Biochem; 1979 May; 85(5):1165-72. PubMed ID: 571868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymological aspects of caffeine demethylation and formaldehyde oxidation by Pseudomonas putida C1.
    Hohnloser W; Osswald B; Lingens F
    Hoppe Seylers Z Physiol Chem; 1980 Dec; 361(12):1763-6. PubMed ID: 7461603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of artificial metalloenzymes for the reduction of nicotinamide cofactors.
    Basle M; Padley HAW; Martins FL; Winkler GS; Jäger CM; Pordea A
    J Inorg Biochem; 2021 Jul; 220():111446. PubMed ID: 33865209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.