These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35146905)

  • 1. Fabrication of Oriented Colloidal Crystals from Capillary Assembly of Polymer-Tethered Gold Nanoparticles.
    Gao Y; Zhou Y; Xu X; Chen C; Xiong B; Zhu J
    Small; 2022 Apr; 18(13):e2106880. PubMed ID: 35146905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Body centered tetragonal nanoparticle superlattices: why and when they form?
    Missoni L; Tagliazucchi M
    Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexistence of hcp and bct Phases during In Situ Superlattice Assembly from Faceted Colloidal Nanocrystals.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    J Phys Chem Lett; 2019 Oct; 10(20):6331-6338. PubMed ID: 31578064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-anisotropy driven symmetry transformations in nanocrystal superlattice polymorphs.
    Bian K; Choi JJ; Kaushik A; Clancy P; Smilgies DM; Hanrath T
    ACS Nano; 2011 Apr; 5(4):2815-23. PubMed ID: 21344877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Phase Behavior of Nanoparticle Superlattices in the Presence of a Solvent.
    Missoni LL; Tagliazucchi M
    ACS Nano; 2020 May; 14(5):5649-5658. PubMed ID: 32286787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entropically Driven Fabrication of Binary Superlattices Assembled from Polymer-Tethered Nanocubes and Nanospheres.
    Yue X; Li J; Yan N; Jiang W
    Small; 2023 Jun; 19(24):e2207984. PubMed ID: 36896998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Fe
    Huang X; Zhu J; Ge B; Deng K; Wu X; Xiao T; Jiang T; Quan Z; Cao YC; Wang Z
    J Am Chem Soc; 2019 Feb; 141(7):3198-3206. PubMed ID: 30685973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices.
    Li J; Liu X; Jin J; Yan N; Jiang W
    Nanotechnology; 2022 Jun; 33(38):. PubMed ID: 35697002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of 2D Gold Nanoparticle Superlattice in a Polymer Vesicle Layer Driven by Hydrophobic Interaction.
    Jang JD; Bae M; Do C; Choi SH; Bang J; Han YS; Kim TH
    J Phys Chem Lett; 2021 Jul; 12(28):6736-6743. PubMed ID: 34264079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Selective Self-Assembled Superlattices of Gold Nanoparticles Driven by Block Copolymer Template Guidance.
    Yoon YJ; Kang SH; Kim TH
    J Phys Chem Lett; 2021 Dec; 12(49):11960-11967. PubMed ID: 34881900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of Mesogenic Coronas on the Type and Anisotropy of Gold Nanoparticle Superlattices: When Can the Tail Wag the Dog?
    Zhao YY; Li Y; Cao Y; Mehl GH; Liu F; Ungar G
    Chemistry; 2023 Feb; 29(11):e202203673. PubMed ID: 36573704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2D superlattices
    Jiang L; Mao X; Liu C; Guo X; Deng R; Zhu J
    Chem Commun (Camb); 2023 Nov; 59(96):14223-14235. PubMed ID: 37962523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-Assembly of Polymer End-Tethered Gold Nanorods into Two-Dimensional Arrays with Tunable Tilt Structures.
    Li F; Wang K; Deng N; Xu J; Yi M; Xiong B; Zhu J
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6566-6574. PubMed ID: 33522228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating Multiple Variables To Understand the Nucleation and Growth and Transformation of PbS Nanocrystal Superlattices.
    Wang Z; Bian K; Nagaoka Y; Fan H; Cao YC
    J Am Chem Soc; 2017 Oct; 139(41):14476-14482. PubMed ID: 28953387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoding the Pathway-Dependent Self-Assembly of Polymer-Grafted Nanoparticles by Ligand Crystallization.
    Gu P; Li H; Xiong B; Li J; Chen Z; Li W; Mao X; Wang H; Jin J; Xu J; Zhu J
    Small; 2024 Apr; 20(14):e2306671. PubMed ID: 37992245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible, Tunable, Electric-Field Driven Assembly of Silver Nanocrystal Superlattices.
    Yu Y; Yu D; Orme CA
    Nano Lett; 2017 Jun; 17(6):3862-3869. PubMed ID: 28511013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy landscape of self-assembled superlattices of PbSe nanocrystals.
    Quan Z; Wu D; Zhu J; Evers WH; Boncella JM; Siebbeles LD; Wang Z; Navrotsky A; Xu H
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9054-7. PubMed ID: 24927573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.