BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 35146973)

  • 1. Effects of patient-specific treatment planning on eligibility for photodynamic therapy of deep tissue abscess cavities: retrospective Monte Carlo simulation study.
    Li Z; Nguyen L; Bass DA; Baran TM
    J Biomed Opt; 2022 Feb; 27(8):. PubMed ID: 35146973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic therapy of deep tissue abscess cavities: Retrospective image-based feasibility study using Monte Carlo simulation.
    Baran TM; Choi HW; Flakus MJ; Sharma AK
    Med Phys; 2019 Jul; 46(7):3259-3267. PubMed ID: 31056771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment planning for photodynamic therapy of abscess cavities using patient-specific optical properties measured prior to illumination.
    Li Z; Hannan MN; Sharma AK; Baran TM
    medRxiv; 2023 Nov; ():. PubMed ID: 37961683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First in human measurements of abscess cavity optical properties and methylene blue uptake prior to photodynamic therapy by
    Hannan MN; Sharma AK; Baran TM
    J Biomed Opt; 2024 Feb; 29(2):027002. PubMed ID: 38414658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary measurements of optical properties in human abscess cavities prior to methylene blue photodynamic therapy.
    Hannan MN; Sharma AK; Baran TM
    Proc SPIE Int Soc Opt Eng; 2023; 12359():. PubMed ID: 37860151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First in human measurements of abscess cavity optical properties and methylene blue uptake prior to photodynamic therapy by
    Hannan MN; Sharma AK; Baran TM
    medRxiv; 2023 Oct; ():. PubMed ID: 37905076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation of light fluence calculation during pleural PDT.
    Meo JL; Zhu T
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8568():. PubMed ID: 25999640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating sphere effect in whole-bladder wall photodynamic therapy: III. Fluence multiplication, optical penetration and light distribution with an eccentric source for human bladder optical properties.
    van Staveren HJ; Keijzer M; Keesmaat T; Jansen H; Kirkel WJ; Beek JF; Star WM
    Phys Med Biol; 1996 Apr; 41(4):579-90. PubMed ID: 8730658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and Feasibility of Photodynamic Therapy for Percutaneous Image-guided Abdominopelvic Abscess Drainage: Phase 1 Trial.
    Baran TM; Bass DA; Christensen L; Longbine E; Favella MD; Foster TH; Sharma AK
    Radiology; 2024 Mar; 310(3):e232667. PubMed ID: 38501946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating sphere effect in whole-bladder-wall photodynamic therapy: II. The influence of urine at 458, 488, 514 and 630 nm optical irradiation.
    van Staveren HJ; Beek JF; Keijzer M; Star WM
    Phys Med Biol; 1995 Aug; 40(8):1307-15. PubMed ID: 7480114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma.
    Lilge L; Molpus K; Hasan T; Wilson BC
    Photochem Photobiol; 1998 Sep; 68(3):281-8. PubMed ID: 9747583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimal required PDT light dosimetry for nonmuscle invasive bladder cancer.
    Lilge L; Wu J; Xu Y; Manalac A; Molenhuis D; Schwiegelshohn F; Vesselov L; Embree W; Nesbit M; Betz V; Mandel A; Jewett MAS; Kulkarni GS
    J Biomed Opt; 2020 Jun; 25(6):1-13. PubMed ID: 32529817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bladder PDT with intravesical clear and light scattering media: effect of an eccentric isotropic light source on the light distribution.
    van Staveren HJ; Bertrams RH; Star WM
    Lasers Surg Med; 1997; 20(3):248-53. PubMed ID: 9138253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT).
    Ong YH; Kim MM; Finlay JC; Dimofte A; Singhal S; Glatstein E; Cengel KA; Zhu TC
    Phys Med Biol; 2017 Dec; 63(1):015031. PubMed ID: 29106380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the tumor tissue optical properties during and after photodynamic therapy using inverse Monte Carlo method and double integrating sphere between 350 and 1000 nm.
    Honda N; Ishii K; Terada T; Nanjo T; Awazu K
    J Biomed Opt; 2011 May; 16(5):058003. PubMed ID: 21639587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light Fluence Dosimetry in Lung-simulating Cavities.
    Zhu TC; Kim MM; Padawer J; Dimofte A; Potasek M; Beeson K; Parilov E
    Proc SPIE Int Soc Opt Eng; 2018; 10476():. PubMed ID: 29780196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hardware acceleration of a Monte Carlo simulation for photodynamic therapy [corrected] treatment planning.
    Lo WC; Redmond K; Luu J; Chow P; Rose J; Lilge L
    J Biomed Opt; 2009; 14(1):014019. PubMed ID: 19256707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulation of light fluence in tissue in a cylindrical diffusing fibre geometry.
    Farina B; Saponaro S; Pignoli E; Tomatis S; Marchesini R
    Phys Med Biol; 1999 Jan; 44(1):1-11. PubMed ID: 10071871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations for optimal light delivery in photodynamic therapy of non-melanoma skin cancer.
    Valentine RM; Wood K; Brown CT; Ibbotson SH; Moseley H
    Phys Med Biol; 2012 Oct; 57(20):6327-45. PubMed ID: 22990348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry.
    Zhu TC; Lu A; Ong YH
    Proc SPIE Int Soc Opt Eng; 2016 Mar; 9706():97061D. PubMed ID: 27053827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.