These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 35147194)
21. Genome-Wide Association Analysis for Phosphorus Use Efficiency Traits in Mungbean ( Reddy VRP; Das S; Dikshit HK; Mishra GP; Aski M; Meena SK; Singh A; Pandey R; Singh MP; Tripathi K; Gore PG; Priti ; Bhagat TK; Kumar S; Nair R; Sharma TR Front Plant Sci; 2020; 11():537766. PubMed ID: 33193476 [TBL] [Abstract][Full Text] [Related]
22. Unmasking Novel Loci for Internal Phosphorus Utilization Efficiency in Rice Germplasm through Genome-Wide Association Analysis. Wissuwa M; Kondo K; Fukuda T; Mori A; Rose MT; Pariasca-Tanaka J; Kretzschmar T; Haefele SM; Rose TJ PLoS One; 2015; 10(4):e0124215. PubMed ID: 25923470 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of Glucosinolate Production in Watercress ( Nasturtium officinale) Hairy Roots by Overexpressing Cabbage Transcription Factors. Cuong DM; Park CH; Bong SJ; Kim NS; Kim JK; Park SU J Agric Food Chem; 2019 May; 67(17):4860-4867. PubMed ID: 30973222 [TBL] [Abstract][Full Text] [Related]
24. Construction of an Efficient Genetic Transformation System for Watercress ( Ran J; Ding Q; Shen Y; Gao Z; Wang G; Gao Y; Ma X; Hou X Plants (Basel); 2023 Dec; 12(24):. PubMed ID: 38140475 [TBL] [Abstract][Full Text] [Related]
25. Crop root system plasticity for improved yields in saline soils. Shelden MC; Munns R Front Plant Sci; 2023; 14():1120583. PubMed ID: 36909408 [TBL] [Abstract][Full Text] [Related]
26. An Appraisal of Potential for Sowing of Nasturtium Vinten A; Bowden-Smith P Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 32023999 [TBL] [Abstract][Full Text] [Related]
27. Volatile emissions of watercress (Nasturtium officinale) leaves and passion fruit (Passiflora edulis) seeds against Meloidogyne incognita. Silva MF; Campos VP; Barros AF; Terra WC; Pedroso MP; Gomes VA; Ribeiro CR; Silva FJ Pest Manag Sci; 2020 Apr; 76(4):1413-1421. PubMed ID: 31625270 [TBL] [Abstract][Full Text] [Related]
28. Identification and analysis of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation in watercress ( Bong SJ; Jeon J; Park YJ; Kim JK; Park SU 3 Biotech; 2020 Jun; 10(6):260. PubMed ID: 32477847 [TBL] [Abstract][Full Text] [Related]
29. Genetic variation in morphological traits in cotton and their roles in increasing phosphorus-use-efficiency in response to low phosphorus availability. Kayoumu M; Li X; Iqbal A; Wang X; Gui H; Qi Q; Ruan S; Guo R; Dong Q; Zhang X; Song M Front Plant Sci; 2022; 13():1051080. PubMed ID: 36531355 [TBL] [Abstract][Full Text] [Related]
30. Watercress and amphipods Potential chemical defense in a spring stream macrophyte. Newman RM; Kerfoot WC; Hanscom Z J Chem Ecol; 1990 Jan; 16(1):245-59. PubMed ID: 24264910 [TBL] [Abstract][Full Text] [Related]
32. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. Nadeem M; Wu J; Ghaffari H; Kedir AJ; Saleem S; Mollier A; Singh J; Cheema M Front Plant Sci; 2022; 13():804058. PubMed ID: 35371179 [TBL] [Abstract][Full Text] [Related]
33. Environmental and anthropogenic drivers of watercress ( Khan N; Ullah R; Okla MK; Abdel-Maksoud MA; Saleh IA; Abu-Harirah HA; AlRamadneh TN; AbdElgawad H Front Plant Sci; 2023; 14():1225030. PubMed ID: 37841622 [TBL] [Abstract][Full Text] [Related]
34. Chemiluminescent examination of abiotic oxidative stress of watercress. Beals C; Byl T Environ Toxicol Chem; 2013 Jun; ():. PubMed ID: 23787826 [TBL] [Abstract][Full Text] [Related]
35. First identification of Vicente JG; McHugh J; Bryning A; Carroll S; Harrison J; Studholme D Plant Dis; 2023 Mar; ():. PubMed ID: 36867585 [TBL] [Abstract][Full Text] [Related]
36. First Report of Turnip mosaic virus on Watercress in Brazil. Costa H; Ventura JA; Jadão AS; Rezende JAM; Mello APOA Plant Dis; 2010 Aug; 94(8):1066. PubMed ID: 30743467 [TBL] [Abstract][Full Text] [Related]
37. Understanding the Postharvest Phytochemical Composition Fates of Packaged Watercress ( Pignata G; Ertani A; Casale M; Niñirola D; Egea-Gilabert C; Fernández JA; Nicola S Plants (Basel); 2022 Feb; 11(5):. PubMed ID: 35270058 [TBL] [Abstract][Full Text] [Related]
38. Global trends of cropland phosphorus use and sustainability challenges. Zou T; Zhang X; Davidson EA Nature; 2022 Nov; 611(7934):81-87. PubMed ID: 36224391 [TBL] [Abstract][Full Text] [Related]
39. Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Giallourou N; Oruna-Concha MJ; Harbourne N Food Chem; 2016 Dec; 212():411-9. PubMed ID: 27374550 [TBL] [Abstract][Full Text] [Related]
40. The Frustration with Utilization: Why Have Improvements in Internal Phosphorus Utilization Efficiency in Crops Remained so Elusive? Rose TJ; Rose MT; Pariasca-Tanaka J; Heuer S; Wissuwa M Front Plant Sci; 2011; 2():73. PubMed ID: 22639608 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]