BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35147572)

  • 1. Vestibulo-ocular reflex gain improvements at peak head acceleration and velocity following onset of unilateral vestibular neuritis: Insights into neural compensation mechanisms.
    Cleworth TW; Kessler P; Honegger F; Carpenter MG; Allum JHJ
    J Vestib Res; 2022; 32(6):517-527. PubMed ID: 35147572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effect of Peripheral Vestibular Recovery on Improvements in Vestibulo-ocular Reflexes and Balance Control After Acute Unilateral Peripheral Vestibular Loss.
    Allum JHJ; Scheltinga A; Honegger F
    Otol Neurotol; 2017 Dec; 38(10):e531-e538. PubMed ID: 29135873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relation between head impulse tests, rotating chair tests, and stance and gait posturography after an acute unilateral peripheral vestibular deficit.
    Allum JH; Honegger F
    Otol Neurotol; 2013 Aug; 34(6):980-9. PubMed ID: 23820798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery times of stance and gait balance control after an acute unilateral peripheral vestibular deficit.
    Allum JH; Honegger F
    J Vestib Res; 2016; 25(5-6):219-31. PubMed ID: 26890423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations Between Multi-plane vHIT Responses and Balance Control After Onset of an Acute Unilateral Peripheral Vestibular Deficit.
    Allum JHJ; Honegger F
    Otol Neurotol; 2020 Aug; 41(7):e952-e960. PubMed ID: 32658113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of Vestibulo-Ocular Reflex Symmetry After an Acute Unilateral Peripheral Vestibular Deficit: Time Course and Correlation With Canal Paresis.
    Allum JH; Cleworth T; Honegger F
    Otol Neurotol; 2016 Jul; 37(6):772-80. PubMed ID: 27159843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of Asymmetric Vestibulo-Ocular Reflex Responses Following Onset of Vestibular Neuritis Is Similar Across Canal Planes.
    Allum JHJ; Honegger F
    Front Neurol; 2020; 11():565125. PubMed ID: 33123077
    [No Abstract]   [Full Text] [Related]  

  • 8. Human horizontal vestibulo-ocular reflex initiation: effects of acceleration, target distance, and unilateral deafferentation.
    Crane BT; Demer JL
    J Neurophysiol; 1998 Sep; 80(3):1151-66. PubMed ID: 9744929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head impulse test in unilateral vestibular loss: vestibulo-ocular reflex and catch-up saccades.
    Weber KP; Aw ST; Todd MJ; McGarvie LA; Curthoys IS; Halmagyi GM
    Neurology; 2008 Feb; 70(6):454-63. PubMed ID: 18250290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in head impulse test results due to analysis techniques.
    Cleworth TW; Carpenter MG; Honegger F; Allum JHJ
    J Vestib Res; 2017; 27(2-3):163-172. PubMed ID: 29064828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial vestibulo-ocular reflex during transient angular and linear acceleration in human cerebellar dysfunction.
    Crane BT; Tian JR; Demer JL
    Exp Brain Res; 2000 Feb; 130(4):486-96. PubMed ID: 10717790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensatory saccades in head impulse testing influence the dynamic visual acuity of patients with unilateral peripheral vestibulopathy1.
    Wettstein VG; Weber KP; Bockisch CJ; Hegemann SC
    J Vestib Res; 2016 Nov; 26(4):395-402. PubMed ID: 27814315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human horizontal vestibulo-ocular reflex in response to high-acceleration stimulation before and after unilateral vestibular neurectomy.
    Halmagyi GM; Curthoys IS; Cremer PD; Henderson CJ; Todd MJ; Staples MJ; D'Cruz DM
    Exp Brain Res; 1990; 81(3):479-90. PubMed ID: 2226683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A video-oculographic study of acute vestibular syndromes.
    Roberts HN; McGuigan S; Infeld B; Sultana RV; Gerraty RP
    Acta Neurol Scand; 2016 Oct; 134(4):258-64. PubMed ID: 26608951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of the high-acceleration vestibulo-ocular reflex after vestibular neuritis.
    Palla A; Straumann D
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):427-35. PubMed ID: 15675005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of the difference between the results of caloric tests and video head pulse tests in patients with vestibular migraine and vestibular neuritis].
    Wang W; Yang YC; Zhuang JH; Li F; Gao B
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 May; 32(9):647-652. PubMed ID: 29771078
    [No Abstract]   [Full Text] [Related]  

  • 17. Unilateral adaptation of the human angular vestibulo-ocular reflex.
    Migliaccio AA; Schubert MC
    J Assoc Res Otolaryngol; 2013 Feb; 14(1):29-36. PubMed ID: 23180230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VOR gain by head impulse video-oculography differentiates acute vestibular neuritis from stroke.
    Mantokoudis G; Tehrani AS; Wozniak A; Eibenberger K; Kattah JC; Guede CI; Zee DS; Newman-Toker DE
    Otol Neurotol; 2015 Mar; 36(3):457-65. PubMed ID: 25321888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. II. responses in subjects with unilateral vestibular loss and selective semicircular canal occlusion.
    Aw ST; Halmagyi GM; Haslwanter T; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4021-30. PubMed ID: 8985897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Latency of voluntary cancellation of the human vestibulo-ocular reflex during transient yaw rotation.
    Crane BT; Demer JL
    Exp Brain Res; 1999 Jul; 127(1):67-74. PubMed ID: 10424415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.