These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35147621)

  • 1. Rational design for gold nanoparticle-based plasmonic catalysts and electrodes for water oxidation towards artificial photosynthesis.
    Tada H
    Dalton Trans; 2022 Mar; 51(9):3383-3393. PubMed ID: 35147621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic Nanozymes: Engineered Gold Nanoparticles Exhibit Tunable Plasmon-Enhanced Peroxidase-Mimicking Activity.
    Zhang Y; Villarreal E; Li GG; Wang W; Wang H
    J Phys Chem Lett; 2020 Nov; 11(21):9321-9328. PubMed ID: 33089980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosol-Sprayed Gold/Ceria Photocatalyst with Superior Plasmonic Hot Electron-Enabled Visible-Light Activity.
    Jia H; Zhu XM; Jiang R; Wang J
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2560-2571. PubMed ID: 28054765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts.
    Tada H
    Nanoscale Adv; 2019 Nov; 1(11):4238-4245. PubMed ID: 36134411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor photocatalysts for water oxidation: current status and challenges.
    Yang L; Zhou H; Fan T; Zhang D
    Phys Chem Chem Phys; 2014 Apr; 16(15):6810-26. PubMed ID: 24599528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of charge transfer in Au nanoparticle-ZnO nanosheet composite photocatalysts.
    Sung YH; Frolov VD; Pimenov SM; Wu JJ
    Phys Chem Chem Phys; 2012 Nov; 14(42):14492-4. PubMed ID: 23032872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation.
    Tsukamoto D; Shiraishi Y; Sugano Y; Ichikawa S; Tanaka S; Hirai T
    J Am Chem Soc; 2012 Apr; 134(14):6309-15. PubMed ID: 22440019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Surface Plasmon Resonance of Au/SnO2 by Modification with Ag and Cu for Photoinduced Reactions under Visible-Light Irradiation over a Wide Range.
    Tanaka A; Hashimoto K; Kominami H
    Chemistry; 2016 Mar; 22(13):4592-9. PubMed ID: 26880569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation.
    Seh ZW; Liu S; Low M; Zhang SY; Liu Z; Mlayah A; Han MY
    Adv Mater; 2012 May; 24(17):2310-4. PubMed ID: 22467121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting.
    Zhang Z; Zhang L; Hedhili MN; Zhang H; Wang P
    Nano Lett; 2013 Jan; 13(1):14-20. PubMed ID: 23205530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts.
    Wang S; Gao Y; Miao S; Liu T; Mu L; Li R; Fan F; Li C
    J Am Chem Soc; 2017 Aug; 139(34):11771-11778. PubMed ID: 28777568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Yoshino S; Takayama T; Yamaguchi Y; Iwase A; Kudo A
    Acc Chem Res; 2022 Apr; 55(7):966-977. PubMed ID: 35230087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites.
    Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W
    Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic Au/TiO₂ nanorod arrays for visible-light driven photoelectrochemical water splitting.
    Su F; Wang T; Lv R; Zhang J; Zhang P; Lu J; Gong J
    Nanoscale; 2013 Oct; 5(19):9001-9. PubMed ID: 23864159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel composites based on chitosan and CuAuTiO
    Ramírez O; Lopéz-Frances A; Baldoví HG; Saldías C; Navalón S; Leiva A; Díaz DD
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):132898. PubMed ID: 38844280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Au Nanoparticle@Ti
    Wang J; Wei X; Wang X; Song W; Zhong W; Wang M; Ju J; Tang Y
    Inorg Chem; 2021 Apr; 60(8):5890-5897. PubMed ID: 33787232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.