These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35148120)
41. Evaporation of squeezed water droplets between two parallel hydrophobic/superhydrophobic surfaces. He X; Cheng J; Patrick Collier C; Srijanto BR; Briggs DP J Colloid Interface Sci; 2020 Sep; 576():127-138. PubMed ID: 32408162 [TBL] [Abstract][Full Text] [Related]
42. Transport of a partially wetted particle at the liquid/vapor interface under the influence of an externally imposed surfactant generated Marangoni stress. Sharma R; Corcoran TE; Garoff S; Przybycien TM; Tilton RD Colloids Surf A Physicochem Eng Asp; 2017 May; 521():49-60. PubMed ID: 28479673 [TBL] [Abstract][Full Text] [Related]
44. Aqueous solubility (in the range between 298.15 and 338.15 K), vapor pressures (in the range between 10(-5) and 80 Pa) and Henry's law constant of 1,2,3,4-dibenzanthracene and 1,2,5,6-dibenzanthracene. Abou-Naccoul R; Mokbel I; Bassil G; Saab J; Stephan K; Jose J Chemosphere; 2014 Jan; 95():41-9. PubMed ID: 24012142 [TBL] [Abstract][Full Text] [Related]
45. Evaporation-Triggered Segregation of Sessile Binary Droplets. Li Y; Lv P; Diddens C; Tan H; Wijshoff H; Versluis M; Lohse D Phys Rev Lett; 2018 Jun; 120(22):224501. PubMed ID: 29906161 [TBL] [Abstract][Full Text] [Related]
47. Marangoni spreading and contracting three-component droplets on completely wetting surfaces. Baumgartner DA; Shiri S; Sinha S; Karpitschka S; Cira NJ Proc Natl Acad Sci U S A; 2022 May; 119(19):e2120432119. PubMed ID: 35507868 [TBL] [Abstract][Full Text] [Related]
48. Modeling the evaporation of sessile multi-component droplets. Diddens C; Kuerten JGM; van der Geld CWM; Wijshoff HMA J Colloid Interface Sci; 2017 Feb; 487():426-436. PubMed ID: 27810511 [TBL] [Abstract][Full Text] [Related]
49. Self-Lifting Droplet Driven by the Solidification-Induced Solutal Marangoni Flow. Wang F; Chen L; Li Y; Huo P; Gu X; Hu M; Deng D Phys Rev Lett; 2024 Jan; 132(1):014002. PubMed ID: 38242657 [TBL] [Abstract][Full Text] [Related]
50. Evaporation-induced particle microseparations inside droplets floating on a chip. Chang ST; Velev OD Langmuir; 2006 Feb; 22(4):1459-68. PubMed ID: 16460062 [TBL] [Abstract][Full Text] [Related]
51. Evaporation of Liquid Droplet in Nano and Micro Scales from Statistical Rate Theory. Duan F; He B; Wei T J Nanosci Nanotechnol; 2015 Apr; 15(4):3011-6. PubMed ID: 26353528 [TBL] [Abstract][Full Text] [Related]
52. Cooperative evaporation in two-dimensional droplet arrays. Pandey K; Hatte S; Pandey K; Chakraborty S; Basu S Phys Rev E; 2020 Apr; 101(4-1):043101. PubMed ID: 32422850 [TBL] [Abstract][Full Text] [Related]
53. Evaporation and propagation of liquid drop streams at vacuum pressures: Experiments and modeling. Guildenbecher DR; Barnard JJ; Grasser TW; McMaster AM; Campbell RB; Grote DP; Nandy P; Light M Phys Rev E; 2021 Apr; 103(4-1):043105. PubMed ID: 34005901 [TBL] [Abstract][Full Text] [Related]
54. Maximum evaporating flux of molecular fluids from a planar liquid surface. Bird E; Liang Z Phys Rev E; 2020 Oct; 102(4-1):043102. PubMed ID: 33212695 [TBL] [Abstract][Full Text] [Related]
55. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
56. Instabilities in a horizontal liquid layer in cocurrent gas flow with an evaporating interface. Liu R; Kabov OA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066305. PubMed ID: 23005204 [TBL] [Abstract][Full Text] [Related]