These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35148146)

  • 1. Coherent Coupling of Two Remote Magnonic Resonators Mediated by Superconducting Circuits.
    Li Y; Yefremenko VG; Lisovenko M; Trevillian C; Polakovic T; Cecil TW; Barry PS; Pearson J; Divan R; Tyberkevych V; Chang CL; Welp U; Kwok WK; Novosad V
    Phys Rev Lett; 2022 Jan; 128(4):047701. PubMed ID: 35148146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong on-Chip Microwave Photon-Magnon Coupling Using Ultralow-Damping Epitaxial Y
    Guo S; Russell D; Lanier J; Da H; Hammel PC; Yang F
    Nano Lett; 2023 Jun; 23(11):5055-5060. PubMed ID: 37235476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous coherent and dissipative coupling in dual photon-magnon hybrid resonators.
    Jeon H; Kim B; Kim J; Bhoi B; Kim SK
    Sci Rep; 2024 Jun; 14(1):13581. PubMed ID: 38866861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit.
    Morris RGE; van Loo AF; Kosen S; Karenowska AD
    Sci Rep; 2017 Sep; 7(1):11511. PubMed ID: 28912482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnon Confinement in an All-on-Chip YIG Cavity Resonator Using Hybrid YIG/Py Magnon Barriers.
    Santos OA; van Wees BJ
    Nano Lett; 2023 Oct; 23(20):9303-9309. PubMed ID: 37819876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
    Fan L; Zou CL; Cheng R; Guo X; Han X; Gong Z; Wang S; Tang HX
    Sci Adv; 2018 Aug; 4(8):eaar4994. PubMed ID: 30128351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong Photon-Magnon Coupling Using a Lithographically Defined Organic Ferrimagnet.
    Xu Q; Cheung HFH; Cormode DS; Puel TO; Pal S; Yusuf H; Chilcote M; Flatté ME; Johnston-Halperin E; Fuchs GD
    Adv Sci (Weinh); 2024 Apr; 11(14):e2310032. PubMed ID: 38279583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong Coupling between Magnons and Microwave Photons in On-Chip Ferromagnet-Superconductor Thin-Film Devices.
    Li Y; Polakovic T; Wang YL; Xu J; Lendinez S; Zhang Z; Ding J; Khaire T; Saglam H; Divan R; Pearson J; Kwok WK; Xiao Z; Novosad V; Hoffmann A; Zhang W
    Phys Rev Lett; 2019 Sep; 123(10):107701. PubMed ID: 31573284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QUANTUM INFORMATION. Coherent coupling between a ferromagnetic magnon and a superconducting qubit.
    Tabuchi Y; Ishino S; Noguchi A; Ishikawa T; Yamazaki R; Usami K; Nakamura Y
    Science; 2015 Jul; 349(6246):405-8. PubMed ID: 26160378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Coupling between Microwave Photons and Nanomagnet Magnons.
    Hou JT; Liu L
    Phys Rev Lett; 2019 Sep; 123(10):107702. PubMed ID: 31573285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling ultracold atoms to a superconducting coplanar waveguide resonator.
    Hattermann H; Bothner D; Ley LY; Ferdinand B; Wiedmaier D; Sárkány L; Kleiner R; Koelle D; Fortágh J
    Nat Commun; 2017 Dec; 8(1):2254. PubMed ID: 29269855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons.
    Pan XF; Li PB; Hei XL; Zhang X; Mochizuki M; Li FL; Nori F
    Phys Rev Lett; 2024 May; 132(19):193601. PubMed ID: 38804949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Passivation of Niobium Superconducting Quantum Circuits Using Self-Assembled Monolayers.
    Alghadeer M; Banerjee A; Hajr A; Hussein H; Fariborzi H; Rao SG
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2319-2328. PubMed ID: 36573579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperbolic lattices in circuit quantum electrodynamics.
    Kollár AJ; Fitzpatrick M; Houck AA
    Nature; 2019 Jul; 571(7763):45-50. PubMed ID: 31270482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid quantum systems with high-T[Formula: see text] superconducting resonators.
    Velluire-Pellat Z; Maréchal E; Moulonguet N; Saïz G; Ménard GC; Kozlov S; Couëdo F; Amari P; Medous C; Paris J; Hostein R; Lesueur J; Feuillet-Palma C; Bergeal N
    Sci Rep; 2023 Sep; 13(1):14366. PubMed ID: 37658090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-Demand Storage and Retrieval of Microwave Photons Using a Superconducting Multiresonator Quantum Memory.
    Bao Z; Wang Z; Wu Y; Li Y; Ma C; Song Y; Zhang H; Duan L
    Phys Rev Lett; 2021 Jul; 127(1):010503. PubMed ID: 34270274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-resolved electrical detection of hybrid magnonic devices.
    Li Y; Zhao C; Amin VP; Zhang Z; Vogel M; Xiong Y; Sklenar J; Divan R; Pearson J; Stiles MD; Zhang W; Hoffmann A; Novosad V
    Appl Phys Lett; 2021; 118():. PubMed ID: 36452035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators.
    Petrosyan D; Fleischhauer M
    Phys Rev Lett; 2008 May; 100(17):170501. PubMed ID: 18518262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics.
    Han X; Zou CL; Tang HX
    Phys Rev Lett; 2016 Sep; 117(12):123603. PubMed ID: 27689272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable spin current transmission and magnon-magnon coupling in hybrid ferrimagnetic insulators.
    Li Y; Zhang Z; Liu C; Zheng D; Fang B; Zhang C; Chen A; Ma Y; Wang C; Liu H; Shen K; Manchon A; Xiao JQ; Qiu Z; Hu CM; Zhang X
    Nat Commun; 2024 Mar; 15(1):2234. PubMed ID: 38472180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.