These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35148362)

  • 1. Focusing on a nickel hydrocorphinoid in a protein matrix: methane generation by methyl-coenzyme M reductase with F430 cofactor and its models.
    Miyazaki Y; Oohora K; Hayashi T
    Chem Soc Rev; 2022 Mar; 51(5):1629-1639. PubMed ID: 35148362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the mechanism of biological methane formation: structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding.
    Grabarse W; Mahlert F; Duin EC; Goubeaud M; Shima S; Thauer RK; Lamzin V; Ermler U
    J Mol Biol; 2001 May; 309(1):315-30. PubMed ID: 11491299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A nickel hydride complex in the active site of methyl-coenzyme m reductase: implications for the catalytic cycle.
    Harmer J; Finazzo C; Piskorski R; Ebner S; Duin EC; Goenrich M; Thauer RK; Reiher M; Schweiger A; Hinderberger D; Jaun B
    J Am Chem Soc; 2008 Aug; 130(33):10907-20. PubMed ID: 18652465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.
    Thauer RK
    Biochemistry; 2019 Dec; 58(52):5198-5220. PubMed ID: 30951290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methane Generation and Reductive Debromination of Benzylic Position by Reconstituted Myoglobin Containing Nickel Tetradehydrocorrin as a Model of Methyl-coenzyme M Reductase.
    Miyazaki Y; Oohora K; Hayashi T
    Inorg Chem; 2020 Sep; 59(17):11995-12004. PubMed ID: 32794737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase.
    Hinderberger D; Ebner S; Mayr S; Jaun B; Reiher M; Goenrich M; Thauer RK; Harmer J
    J Biol Inorg Chem; 2008 Nov; 13(8):1275-89. PubMed ID: 18712421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of possible competing mechanisms for Ni-containing methyl-coenzyme M reductase.
    Chen SL; Blomberg MR; Siegbahn PE
    Phys Chem Chem Phys; 2014 Jul; 16(27):14029-35. PubMed ID: 24901069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the mechanism of methyl-coenzyme M reductase.
    Ermler U
    Dalton Trans; 2005 Nov; (21):3451-8. PubMed ID: 16234924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Dynamics of the Methyl-Coenzyme M Reductase Active Site Are Influenced by Coenzyme F
    Polêto MD; Allen KD; Lemkul JA
    Biochemistry; 2024 Jul; 63(14):1783-1794. PubMed ID: 38914925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemistry of methyl-coenzyme M reductase: the nickel metalloenzyme that catalyzes the final step in synthesis and the first step in anaerobic oxidation of the greenhouse gas methane.
    Ragsdale SW
    Met Ions Life Sci; 2014; 14():125-45. PubMed ID: 25416393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural insight into methyl-coenzyme M reductase chemistry using coenzyme B analogues .
    Cedervall PE; Dey M; Pearson AR; Ragsdale SW; Wilmot CM
    Biochemistry; 2010 Sep; 49(35):7683-93. PubMed ID: 20707311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel-Sulfonate Mode of Substrate Binding for Forward and Reverse Reactions of Methyl-SCoM Reductase Suggest a Radical Mechanism Involving Long-Range Electron Transfer.
    Patwardhan A; Sarangi R; Ginovska B; Raugei S; Ragsdale SW
    J Am Chem Soc; 2021 Apr; 143(14):5481-5496. PubMed ID: 33761259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the reactivity of Ni in the active site of methyl-coenzyme M reductase with substrate analogues.
    Goenrich M; Mahlert F; Duin EC; Bauer C; Jaun B; Thauer RK
    J Biol Inorg Chem; 2004 Sep; 9(6):691-705. PubMed ID: 15365904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nickel(II)-Containing Vitamin B
    Brenig C; Prieto L; Oetterli R; Zelder F
    Angew Chem Int Ed Engl; 2018 Dec; 57(50):16308-16312. PubMed ID: 30352140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coenzyme B induced coordination of coenzyme M via its thiol group to Ni(I) of F430 in active methyl-coenzyme M reductase.
    Finazzo C; Harmer J; Bauer C; Jaun B; Duin EC; Mahlert F; Goenrich M; Thauer RK; Van Doorslaer S; Schweiger A
    J Am Chem Soc; 2003 Apr; 125(17):4988-9. PubMed ID: 12708843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and kinetic studies of the reaction of bromopropanesulfonate with methyl-coenzyme M reductase.
    Kunz RC; Horng YC; Ragsdale SW
    J Biol Chem; 2006 Nov; 281(45):34663-76. PubMed ID: 16966321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the methyl-coenzyme-m reductase protein matrix on the hole-size and nonplanar deformations of coenzyme F430.
    Mbofana C; Zimmer M
    Inorg Chem; 2006 Mar; 45(6):2598-602. PubMed ID: 16529481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct determination of the number of electrons needed to reduce coenzyme F430 pentamethyl ester to the Ni(I) species exhibiting the electron paramagnetic resonance and ultraviolet-visible spectra characteristic for the MCR(red1) state of methyl-coenzyme M reductase.
    Piskorski R; Jaun B
    J Am Chem Soc; 2003 Oct; 125(43):13120-5. PubMed ID: 14570485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and computational studies of reduction of the metal versus the tetrapyrrole ring of coenzyme F430 from methyl-coenzyme M reductase.
    Dey M; Kunz RC; Van Heuvelen KM; Craft JL; Horng YC; Tang Q; Bocian DF; George SJ; Brunold TC; Ragsdale SW
    Biochemistry; 2006 Oct; 45(39):11915-33. PubMed ID: 17002292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation of the nickel-containing porphinoid cofactor F(430). Comparison of the free cofactor in the (+)1, (+)2 and (+)3 oxidation states with the cofactor bound to methyl-coenzyme M reductase in the silent, red and ox forms.
    Duin EC; Signor L; Piskorski R; Mahlert F; Clay MD; Goenrich M; Thauer RK; Jaun B; Johnson MK
    J Biol Inorg Chem; 2004 Jul; 9(5):563-76. PubMed ID: 15160314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.