BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3514901)

  • 1. Effects of mitochondrial inhibitors on intraerythrocytic Plasmodium falciparum in in vitro cultures.
    Ginsburg H; Divo AA; Geary TG; Boland MT; Jensen JB
    J Protozool; 1986 Feb; 33(1):121-5. PubMed ID: 3514901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria of mammalian Plasmodium spp.
    Fry M; Beesley JE
    Parasitology; 1991 Feb; 102 Pt 1():17-26. PubMed ID: 2038500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of mitochondrial inhibitors on adenosinetriphosphate levels in Plasmodium falciparum.
    Fry M; Webb E; Pudney M
    Comp Biochem Physiol B; 1990; 96(4):775-82. PubMed ID: 2171868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mitochondrion of Plasmodium falciparum visualized by rhodamine 123 fluorescence.
    Divo AA; Geary TG; Jensen JB; Ginsburg H
    J Protozool; 1985 Aug; 32(3):442-6. PubMed ID: 3900366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum.
    Krungkrai J; Burat D; Kudan S; Krungkrai S; Prapunwattana P
    Southeast Asian J Trop Med Public Health; 1999 Dec; 30(4):636-42. PubMed ID: 10928353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward understanding the role of mitochondrial complex II in the intraerythrocytic stages of Plasmodium falciparum: gene targeting of the Fp subunit.
    Tanaka TQ; Hirai M; Watanabe Y; Kita K
    Parasitol Int; 2012 Dec; 61(4):726-8. PubMed ID: 22698672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum.
    Painter HJ; Morrisey JM; Vaidya AB
    Antimicrob Agents Chemother; 2010 Dec; 54(12):5281-7. PubMed ID: 20855748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion metabolism in malaria-infected erythrocytes.
    Tanabe K
    Blood Cells; 1990; 16(2-3):437-49. PubMed ID: 2175223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors.
    Sakata-Kato T; Wirth DF
    ACS Infect Dis; 2016 Dec; 2(12):903-916. PubMed ID: 27718558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic host responses to malarial infection during the intraerythrocytic developmental cycle.
    Wallqvist A; Fang X; Tewari SG; Ye P; Reifman J
    BMC Syst Biol; 2016 Aug; 10(1):58. PubMed ID: 27502771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase.
    Kanaani J; Ginsburg H
    J Biol Chem; 1989 Feb; 264(6):3194-9. PubMed ID: 2536737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrimidine de novo synthesis during the life cycle of the intraerythrocytic stage of Plasmodium falciparum.
    Gero AM; Brown GV; O'Sullivan WJ
    J Parasitol; 1984 Aug; 70(4):536-41. PubMed ID: 6150076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial NADH dehydrogenase from Plasmodium falciparum and Plasmodium berghei.
    Krungkrai J; Kanchanarithisak R; Krungkrai SR; Rochanakij S
    Exp Parasitol; 2002 Jan; 100(1):54-61. PubMed ID: 11971654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle.
    Fang X; Reifman J; Wallqvist A
    Mol Biosyst; 2014 Oct; 10(10):2526-37. PubMed ID: 25001103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ubiquinol-cytochrome c reductase and cytochrome c oxidase: chemotherapeutic targets in malarial parasites.
    Krungkrai J; Krungkrai SR; Suraveratum N; Prapunwattana P
    Biochem Mol Biol Int; 1997 Aug; 42(5):1007-14. PubMed ID: 9285069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum.
    Gerold P; Schwarz RT
    Mol Biochem Parasitol; 2001 Jan; 112(1):29-37. PubMed ID: 11166384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmodium falciparum: food vacuole localization of nitric oxide-derived species in intraerythrocytic stages of the malaria parasite.
    Ostera G; Tokumasu F; Oliveira F; Sa J; Furuya T; Teixeira C; Dvorak J
    Exp Parasitol; 2008 Sep; 120(1):29-38. PubMed ID: 18504040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria.
    Biagini GA; Viriyavejakul P; O'neill PM; Bray PG; Ward SA
    Antimicrob Agents Chemother; 2006 May; 50(5):1841-51. PubMed ID: 16641458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial cytochrome b gene in two developmental stages of human malarial parasite Plasmodium falciparum.
    Petmitr S; Krungkrai J
    Southeast Asian J Trop Med Public Health; 1995 Dec; 26(4):600-5. PubMed ID: 9139360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes.
    Palacpac NM; Hiramine Y; Mi-ichi F; Torii M; Kita K; Hiramatsu R; Horii T; Mitamura T
    J Cell Sci; 2004 Mar; 117(Pt 8):1469-80. PubMed ID: 15020675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.