These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35149183)

  • 41. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.
    Roger M; Brown F; Gabrielli W; Sargent F
    Curr Biol; 2018 Jan; 28(1):140-145.e2. PubMed ID: 29290558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).
    Srikanth S; Maesen M; Dominguez-Benetton X; Vanbroekhoven K; Pant D
    Bioresour Technol; 2014 Aug; 165():350-4. PubMed ID: 24565874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate.
    Abaibou H; Giordano G; Mandrand-Berthelot MA
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2657-2664. PubMed ID: 9274019
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assembly and catalysis of molybdenum or tungsten-containing formate dehydrogenases from bacteria.
    Hartmann T; Schwanhold N; Leimkühler S
    Biochim Biophys Acta; 2015 Sep; 1854(9):1090-100. PubMed ID: 25514355
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduction, evolutionary pattern and positive selection of genes encoding formate dehydrogenase in Wood-Ljungdahl pathway of gastrointestinal acetogens suggests their adaptation to formate-rich habitats.
    Yao Y; Fu B; Han D; Zhang Y; Wei Z; Liu H
    Environ Microbiol Rep; 2023 Apr; 15(2):129-141. PubMed ID: 36779246
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of Functionally Compartmental Inorganic Photocatalyst-Enzyme System via Imitating Chloroplast for Efficient Photoreduction of CO
    Tian Y; Zhou Y; Zong Y; Li J; Yang N; Zhang M; Guo Z; Song H
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34795-34805. PubMed ID: 32805792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A continuous system for biocatalytic hydrogenation of CO
    Mourato C; Martins M; da Silva SM; Pereira IAC
    Bioresour Technol; 2017 Jul; 235():149-156. PubMed ID: 28365342
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase.
    Bassegoda A; Madden C; Wakerley DW; Reisner E; Hirst J
    J Am Chem Soc; 2014 Nov; 136(44):15473-6. PubMed ID: 25325406
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism.
    da Silva SM; Voordouw J; Leitão C; Martins M; Voordouw G; Pereira IAC
    Microbiology (Reading); 2013 Aug; 159(Pt 8):1760-1769. PubMed ID: 23728629
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reaction mechanism of formate dehydrogenase studied by computational methods.
    Dong G; Ryde U
    J Biol Inorg Chem; 2018 Dec; 23(8):1243-1254. PubMed ID: 30173398
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase.
    Cordas CM; Campaniço M; Baptista R; Maia LB; Moura I; Moura JJG
    J Inorg Biochem; 2019 Jul; 196():110694. PubMed ID: 31005821
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate.
    Rouf S; Greish YE; Al-Zuhair S
    Chemosphere; 2021 Mar; 267():128921. PubMed ID: 33190911
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetics for CO
    Siegbahn PEM
    J Phys Chem B; 2022 Mar; 126(8):1728-1733. PubMed ID: 35192765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of molybdate and tungstate on expression levels and biochemical characteristics of formate dehydrogenases produced by Desulfovibrio alaskensis NCIMB 13491.
    Mota CS; Valette O; González PJ; Brondino CD; Moura JJ; Moura I; Dolla A; Rivas MG
    J Bacteriol; 2011 Jun; 193(12):2917-23. PubMed ID: 21478344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases.
    Bulut H; Valjakka J; Yuksel B; Yilmazer B; Turunen O; Binay B
    Protein J; 2020 Oct; 39(5):519-530. PubMed ID: 33043425
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum: its role in formate metabolism.
    Thauer RK; Fuchs G; Jungermann K
    J Bacteriol; 1974 May; 118(2):758-60. PubMed ID: 4597459
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
    Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J
    J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.