These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 3514924)

  • 1. Energy dependent insulin binding, internalization and degradation in isolated cardiac myocytes from normal and diabetic rats.
    Im JH; Frangakis CJ; Rogers WJ; Puckett SW; Bowdon HR; Rackley CE; Meezan E; Kim HD
    J Mol Cell Cardiol; 1986 Feb; 18(2):157-68. PubMed ID: 3514924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internalized insulin-receptor complexes are unidirectionally translocated to chloroquine-sensitive degradative sites. Dependence on metabolic energy.
    Berhanu P
    J Biol Chem; 1988 Apr; 263(12):5961-9. PubMed ID: 3281950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased insulin binding and degradation associated with depressed intracellular ATP content.
    Draznin B; Solomons CC; Emler CA; Schalch DS; Sussman KE
    Diabetes; 1980 Mar; 29(3):221-6. PubMed ID: 6991325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycolysis vs. respiration as ATP source for the shape of quiescent cardiomyocytes.
    Uchida K; Doi K
    Respir Physiol; 1994 Jul; 97(2):213-23. PubMed ID: 7938918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipolysis in isolated myocardial cells from diabetic rat hearts.
    Kenno KA; Severson DL
    Am J Physiol; 1985 Nov; 249(5 Pt 2):H1024-30. PubMed ID: 2415007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of insulin in isolated liver endosomes is functionally linked to ATP-dependent endosomal acidification.
    Desbuquois B; Janicot M; Dupuis A
    Eur J Biochem; 1990 Oct; 193(2):501-12. PubMed ID: 2146119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes.
    Tanaka Y; Konno N; Kako KJ
    Cardiovasc Res; 1992 Apr; 26(4):409-14. PubMed ID: 1638575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol.
    Shibano T; Abiko Y
    Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of calcium loading and impaired energy production on metabolic and ultrastructural features of cell injury in cultured neonatal rat cardiac myocytes.
    Buja LM; Fattor RA; Miller JC; Chien KR; Willerson JT
    Lab Invest; 1990 Sep; 63(3):320-31. PubMed ID: 2168502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose and ATP levels in pancreatic islet tissue of normal and diabetic rats.
    Matschinsky FM; Pagliara AS; Stillings SN; Hover BA
    J Clin Invest; 1976 Nov; 58(5):1193-200. PubMed ID: 136453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insulin binding and glucose transport activity in cardiomyocytes of a diabetic rat.
    Almira EC; Garcia AR; Boshell BR
    Am J Physiol; 1986 Apr; 250(4 Pt 1):E402-6. PubMed ID: 3515965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic basis of decreased transient outward K+ current in ventricular myocytes from diabetic rats.
    Xu Z; Patel KP; Rozanski GJ
    Am J Physiol; 1996 Nov; 271(5 Pt 2):H2190-6. PubMed ID: 8945940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinction between major chloroquine-inhibitable and adrenergic-responsive pathways of protein degradation and their relation to tissue ATP content in the Langendorff isolated perfused rat heart.
    Lockwood TD
    Biochem J; 1988 Apr; 251(2):341-6. PubMed ID: 3401210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triacylglycerol metabolism in hypoxic, glucose-deprived rat cardiomyocytes.
    Myrmel T; Forsdahl K; Larsen TS
    J Mol Cell Cardiol; 1992 Aug; 24(8):855-68. PubMed ID: 1433315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations of ultrastructure and elemental composition in cultured neonatal rat cardiac myocytes after metabolic inhibition with iodoacetic acid.
    Buja LM; Hagler HK; Parsons D; Chien K; Reynolds RC; Willerson JT
    Lab Invest; 1985 Oct; 53(4):397-412. PubMed ID: 2413276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats.
    Mokuda O; Sakamoto Y; Ikeda T; Mashiba H
    Ann Nutr Metab; 1990; 34(5):259-65. PubMed ID: 2244747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of hormone processing in insulin-activated glucose transport by isolated cardiac myocytes.
    Eckel J; Reinauer H
    Biochem J; 1988 Jan; 249(1):111-6. PubMed ID: 3277615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous substrate utilization by isolated myocytes from chronically diabetic rats.
    Chen V; Bagby GJ; Spitzer JJ
    Am J Physiol; 1983 Jul; 245(1):C46-51. PubMed ID: 6869521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters.
    Podgorska M; Kocbuch K; Grden M; Szutowicz A; Pawelczyk T
    J Physiol; 2006 Oct; 576(Pt 1):179-89. PubMed ID: 16873415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Action of metformin on glucose transport and glucose transporter GLUT1 and GLUT4 in heart muscle cells from healthy and diabetic rats.
    Fischer Y; Thomas J; Rösen P; Kammermeier H
    Endocrinology; 1995 Feb; 136(2):412-20. PubMed ID: 7835271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.