These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35149324)

  • 1. Implementation of the EPICS2017 database for photons in Geant4.
    Li Z; Michelet C; Incerti S; Ivanchenko V; Novak M; Guatelli S; Seznec H
    Phys Med; 2022 Mar; 95():94-115. PubMed ID: 35149324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the Radiation Shielding Characteristics of Several Glass Systems Using the EPICS2017 Library.
    Hila FC; Sayyed MI; Javier-Hila AMV; Jecong JFM
    Arab J Sci Eng; 2022; 47(1):1077-1086. PubMed ID: 34422544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geant4 physics list comparison for the simulation of phase-contrast mammography (XPulse project).
    Beaudoux V; Blin G; Barbrel B; Kantor G; Zacharatou C
    Phys Med; 2019 Apr; 60():66-75. PubMed ID: 31000088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.
    Sakata D; Kyriakou I; Okada S; Tran HN; Lampe N; Guatelli S; Bordage MC; Ivanchenko V; Murakami K; Sasaki T; Emfietzoglou D; Incerti S
    Med Phys; 2018 May; 45(5):2230-2242. PubMed ID: 29480947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new concept of pencil beam dose calculation for 40-200 keV photons using analytical dose kernels.
    Bartzsch S; Oelfke U
    Med Phys; 2013 Nov; 40(11):111714. PubMed ID: 24320422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of GATE-RTion (GATE/Geant4) Monte Carlo simulation settings for proton pencil beam scanning quality assurance.
    Winterhalter C; Taylor M; Boersma D; Elia A; Guatelli S; Mackay R; Kirkby K; Maigne L; Ivanchenko V; Resch AF; Sarrut D; Sitch P; Vidal M; Grevillot L; Aitkenhead A
    Med Phys; 2020 Nov; 47(11):5817-5828. PubMed ID: 32967037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.
    Bordage MC; Bordes J; Edel S; Terrissol M; Franceries X; Bardiès M; Lampe N; Incerti S
    Phys Med; 2016 Dec; 32(12):1833-1840. PubMed ID: 27773539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison Between GATE and MCNPX Monte Carlo Codes in Simulation of Medical Linear Accelerator.
    Sadoughi HR; Nasseri S; Momennezhad M; Sadeghi HR; Bahreyni-Toosi MH
    J Med Signals Sens; 2014 Jan; 4(1):10-7. PubMed ID: 24696804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.
    Alnewaini Z; Langer E; Schaber P; David M; Kretz D; Steil V; Hesser J
    J Appl Clin Med Phys; 2017 Mar; 18(2):144-153. PubMed ID: 28300387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation transport calculations for 50 MV photon therapy beam using the Monte Carlo code GEANT4.
    Larsson S; Svensson R; Gudowska I; Ivanchenko V; Brahme A
    Radiat Prot Dosimetry; 2005; 115(1-4):503-7. PubMed ID: 16381775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying key surface parameters for optical photon transport in GEANT4/GATE simulations.
    Nilsson J; Cuplov V; Isaksson M
    Appl Radiat Isot; 2015 Sep; 103():15-24. PubMed ID: 26046519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geant4-based Monte Carlo simulations on GPU for medical applications.
    Bert J; Perez-Ponce H; El Bitar Z; Jan S; Boursier Y; Vintache D; Bonissent A; Morel C; Brasse D; Visvikis D
    Phys Med Biol; 2013 Aug; 58(16):5593-611. PubMed ID: 23892709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model.
    Douglass M; Bezak E; Penfold S
    Med Phys; 2013 Jul; 40(7):071710. PubMed ID: 23822414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo studies on photon interactions in radiobiological experiments.
    Shahmohammadi Beni M; Krstic D; Nikezic D; Yu KN
    PLoS One; 2018; 13(3):e0193575. PubMed ID: 29561871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging.
    Uche CZ; Cree MJ; Round WH
    Australas Phys Eng Sci Med; 2011 Sep; 34(3):409-14. PubMed ID: 21556971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical note: improved implementation of Doppler broadening in MCNP5.
    Bartol LJ; DeWerd LA
    Med Phys; 2012 Sep; 39(9):5635-8. PubMed ID: 22957629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron slowing-down spectra in water for electron and photon sources calculated with the Geant4-DNA code.
    Vassiliev ON
    Phys Med Biol; 2012 Feb; 57(4):1087-94. PubMed ID: 22297165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GMC: a GPU implementation of a Monte Carlo dose calculation based on Geant4.
    Jahnke L; Fleckenstein J; Wenz F; Hesser J
    Phys Med Biol; 2012 Mar; 57(5):1217-29. PubMed ID: 22330587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison between default EGS4 and EGS4 with bound Compton cross sections when scattering occurs in bone and fat.
    Marianno CM; Higley KA; Palmer TS
    Health Phys; 2000 Jun; 78(6):716-20. PubMed ID: 10832933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.