BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 35149342)

  • 1. T lymphocyte-derived extracellular vesicles aggravate abdominal aortic aneurysm by promoting macrophage lipid peroxidation and migration via pyruvate kinase muscle isozyme 2.
    Dang G; Li T; Yang D; Yang G; Du X; Yang J; Miao Y; Han L; Ma X; Song Y; Liu B; Li X; Wang X; Feng J
    Redox Biol; 2022 Apr; 50():102257. PubMed ID: 35149342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-cell-derived extracellular vesicles regulate B-cell IgG production
    Yang J; Dang G; Lü S; Liu H; Ma X; Han L; Deng J; Miao Y; Li X; Shao F; Jiang C; Xu Q; Wang X; Feng J
    FASEB J; 2019 Nov; 33(11):12780-12799. PubMed ID: 31480861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development.
    Wang Y; Jia L; Xie Y; Cai Z; Liu Z; Shen J; Lu Y; Wang Y; Su S; Ma Y; Xiang M
    Atherosclerosis; 2019 Oct; 289():64-72. PubMed ID: 31479773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD95-ligand contributes to abdominal aortic aneurysm progression by modulating inflammation.
    Liu Z; Fitzgerald M; Meisinger T; Batra R; Suh M; Greene H; Penrice AJ; Sun L; Baxter BT; Xiong W
    Cardiovasc Res; 2019 Mar; 115(4):807-818. PubMed ID: 30428004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrostatin-1 inhibits ferroptosis of vascular smooth muscle cells and alleviates abdominal aortic aneurysm formation through activating the SLC7A11/GPX4 axis.
    He X; Xiong Y; Liu Y; Li Y; Zhou H; Wu K
    FASEB J; 2024 Jan; 38(2):e23401. PubMed ID: 38236196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human mesenchymal stromal cell-derived extracellular vesicles attenuate aortic aneurysm formation and macrophage activation via microRNA-147.
    Spinosa M; Lu G; Su G; Bontha SV; Gehrau R; Salmon MD; Smith JR; Weiss ML; Mas VR; Upchurch GR; Sharma AK
    FASEB J; 2018 May; 32(11):fj201701138RR. PubMed ID: 29812968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolution of inflammation via RvD1/FPR2 signaling mitigates Nox2 activation and ferroptosis of macrophages in experimental abdominal aortic aneurysms.
    Filiberto AC; Ladd Z; Leroy V; Su G; Elder CT; Pruitt EY; Hensley SE; Lu G; Hartman JB; Zarrinpar A; Sharma AK; Upchurch GR
    FASEB J; 2022 Nov; 36(11):e22579. PubMed ID: 36183323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IL (Interleukin)-33 Suppresses Abdominal Aortic Aneurysm by Enhancing Regulatory T-Cell Expansion and Activity.
    Li J; Xia N; Wen S; Li D; Lu Y; Gu M; Tang T; Jiao J; Lv B; Nie S; Liao M; Liao Y; Yang X; Hu Y; Shi GP; Cheng X
    Arterioscler Thromb Vasc Biol; 2019 Mar; 39(3):446-458. PubMed ID: 30651000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage inflammasome mediates hyperhomocysteinemia-aggravated abdominal aortic aneurysm.
    Sun W; Pang Y; Liu Z; Sun L; Liu B; Xu M; Dong Y; Feng J; Jiang C; Kong W; Wang X
    J Mol Cell Cardiol; 2015 Apr; 81():96-106. PubMed ID: 25680906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. B cell-derived anti-beta 2 glycoprotein I antibody contributes to hyperhomocysteinaemia-aggravated abdominal aortic aneurysm.
    Shao F; Miao Y; Zhang Y; Han L; Ma X; Deng J; Jiang C; Kong W; Xu Q; Feng J; Wang X
    Cardiovasc Res; 2020 Sep; 116(11):1897-1909. PubMed ID: 31782769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways.
    Nakao T; Horie T; Baba O; Nishiga M; Nishino T; Izuhara M; Kuwabara Y; Nishi H; Usami S; Nakazeki F; Ide Y; Koyama S; Kimura M; Sowa N; Ohno S; Aoki H; Hasegawa K; Sakamoto K; Minatoya K; Kimura T; Ono K
    Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2161-2170. PubMed ID: 28882868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-Bound Thrombomodulin Regulates Macrophage Inflammation in Abdominal Aortic Aneurysm.
    Wang KC; Li YH; Shi GY; Tsai HW; Luo CY; Cheng MH; Ma CY; Hsu YY; Cheng TL; Chang BI; Lai CH; Wu HL
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2412-22. PubMed ID: 26338301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor β neutralization finely tunes macrophage phenotype in elastase-induced abdominal aortic aneurysm and is associated with an increase of arginase 1 expression in the aorta.
    Raffort J; Lareyre F; Clément M; Moratal C; Jean-Baptiste E; Hassen-Khodja R; Burel-Vandenbos F; Bruneval P; Chinetti G; Mallat Z
    J Vasc Surg; 2019 Aug; 70(2):588-598.e2. PubMed ID: 30792060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidase deficiency exacerbates angiotensin II-induced abdominal aortic aneurysms in mice.
    Kigawa Y; Miyazaki T; Lei XF; Nakamachi T; Oguchi T; Kim-Kaneyama JR; Taniyama M; Tsunawaki S; Shioda S; Miyazaki A
    Arterioscler Thromb Vasc Biol; 2014 Nov; 34(11):2413-20. PubMed ID: 25189573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis.
    Zhao X; Tan F; Cao X; Cao Z; Li B; Shen Z; Tian Y
    Acta Biochim Biophys Sin (Shanghai); 2020 Jan; 52(1):9-17. PubMed ID: 31867609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm.
    Usui F; Shirasuna K; Kimura H; Tatsumi K; Kawashima A; Karasawa T; Yoshimura K; Aoki H; Tsutsui H; Noda T; Sagara J; Taniguchi S; Takahashi M
    Arterioscler Thromb Vasc Biol; 2015 Jan; 35(1):127-36. PubMed ID: 25378412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of activating IgG Fc receptors in macrophages aggravates the development of experimental abdominal aortic aneurysm.
    López-Sanz L; Bernal S; Jiménez-Castilla L; Pardines M; Hernández-García A; Blanco-Colio L; Martín-Ventura JL; Gómez Guerrero C
    Clin Investig Arterioscler; 2023; 35(4):185-194. PubMed ID: 36737385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of vascular endothelial growth factor-A in development of abdominal aortic aneurysm.
    Kaneko H; Anzai T; Takahashi T; Kohno T; Shimoda M; Sasaki A; Shimizu H; Nagai T; Maekawa Y; Yoshimura K; Aoki H; Yoshikawa T; Okada Y; Yozu R; Ogawa S; Fukuda K
    Cardiovasc Res; 2011 Jul; 91(2):358-67. PubMed ID: 21436157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model.
    Cheng J; Koenig SN; Kuivaniemi HS; Garg V; Hans CP
    J Am Heart Assoc; 2014 Oct; 3(6):e001064. PubMed ID: 25349182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-inducible factor 1 in clinical and experimental aortic aneurysm disease.
    Wang W; Xu B; Xuan H; Ge Y; Wang Y; Wang L; Huang J; Fu W; Michie SA; Dalman RL
    J Vasc Surg; 2018 Nov; 68(5):1538-1550.e2. PubMed ID: 29242064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.