These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35149348)

  • 21. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-fluid wetting behavior of a hydrophobic silicon nanowire array.
    Kim Y; Chung Y; Tian Y; Carraro C; Maboudian R
    Langmuir; 2014 Nov; 30(44):13330-7. PubMed ID: 25356959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wetting characteristics of vertically aligned graphene nanosheets.
    Ghosh M; Anand V; Gowravaram MR
    Nanotechnology; 2018 Sep; 29(38):385703. PubMed ID: 29975193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and Stability of Thin Condensing Films on Structured Amphiphilic Surfaces.
    Winter RL; Ölçeroǧlu E; Chen Z; Lau KKS; McCarthy M
    Langmuir; 2021 Mar; 37(8):2683-2692. PubMed ID: 33600180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wetting behavior of water droplets on hydrophobic microtextures of comparable size.
    Jopp J; Grüll H; Yerushalmi-Rozen R
    Langmuir; 2004 Nov; 20(23):10015-9. PubMed ID: 15518488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics.
    Hyde GK; Scarel G; Spagnola JC; Peng Q; Lee K; Gong B; Roberts KG; Roth KM; Hanson CA; Devine CK; Stewart SM; Hojo D; Na JS; Jur JS; Parsons GN
    Langmuir; 2010 Feb; 26(4):2550-8. PubMed ID: 19799446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of Engineered Wettability on the Efficiency of Dew Collection.
    Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wetting Transition on Liquid-Repellent Surfaces Probed by Surface Force Measurements and Confocal Imaging.
    Eriksson M; Claesson PM; Järn M; Tuominen M; Wallqvist V; Schoelkopf J; Gane PAC; Swerin A
    Langmuir; 2019 Oct; 35(41):13275-13285. PubMed ID: 31547659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces.
    Shi S; Lv C; Zheng Q
    Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention.
    Keshavarzi S; Momen G; Eberle P; Azimi Yancheshme A; Alvarez NJ; Jafari R
    J Colloid Interface Sci; 2024 Sep; 670():550-562. PubMed ID: 38776690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces.
    Jung YC; Bhushan B
    J Microsc; 2008 Jan; 229(Pt 1):127-40. PubMed ID: 18173651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scalable graphene coatings for enhanced condensation heat transfer.
    Preston DJ; Mafra DL; Miljkovic N; Kong J; Wang EN
    Nano Lett; 2015 May; 15(5):2902-9. PubMed ID: 25826223
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.