These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 35149401)

  • 1. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production.
    López-Sánchez A; Silva-Gálvez AL; Aguilar-Juárez Ó; Senés-Guerrero C; Orozco-Nunnelly DA; Carrillo-Nieves D; Gradilla-Hernández MS
    J Environ Manage; 2022 Apr; 308():114612. PubMed ID: 35149401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen.
    Ferreira A; Marques P; Ribeiro B; Assemany P; de Mendonça HV; Barata A; Oliveira AC; Reis A; Pinheiro HM; Gouveia L
    Environ Res; 2018 Jul; 164():32-38. PubMed ID: 29475106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach.
    Ummalyma SB; Sahoo D; Pandey A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept.
    Najar-Almanzor CE; Velasco-Iglesias KD; Nunez-Ramos R; Uribe-Velázquez T; Solis-Bañuelos M; Fuentes-Carrasco OJ; Chairez I; García-Cayuela T; Carrillo-Nieves D
    J Environ Manage; 2023 Nov; 345():118774. PubMed ID: 37619389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy.
    Díaz V; Leyva-Díaz JC; Almécija MC; Poyatos JM; Del Mar Muñío M; Martín-Pascual J
    Bioresour Technol; 2022 Nov; 363():127968. PubMed ID: 36115507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogranulation process facilitates cost-efficient resources recovery from microalgae-based wastewater treatment systems and the creation of a circular bioeconomy.
    Wang Q; Li H; Shen Q; Wang J; Chen X; Zhang Z; Lei Z; Yuan T; Shimizu K; Liu Y; Lee DJ
    Sci Total Environ; 2022 Jul; 828():154471. PubMed ID: 35288130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies.
    Silva-Gálvez AL; López-Sánchez A; Camargo-Valero MA; Prosenc F; González-López ME; Gradilla-Hernández MS
    J Environ Manage; 2024 Mar; 354():120258. PubMed ID: 38387343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy.
    Satya ADM; Cheah WY; Yazdi SK; Cheng YS; Khoo KS; Vo DN; Bui XD; Vithanage M; Show PL
    Environ Res; 2023 Feb; 218():114948. PubMed ID: 36455634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Algomics technology: Application in wastewater treatment and biofuel production.
    Kadri MS; Singhania RR; Haldar D; Patel AK; Bhatia SK; Saratale G; Parameswaran B; Chang JS
    Bioresour Technol; 2023 Nov; 387():129636. PubMed ID: 37544548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Scenedesmus obliquus in anaerobically digested swine wastewater from different cleaning processes for pollutants removal and biomass production.
    Tan XB; Zhao ZY; Gong H; Jiang T; Liu XP; Liao JY; Zhang YL
    Chemosphere; 2024 Mar; 352():141515. PubMed ID: 38387659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies.
    Pereira ASAP; Silva TAD; Magalhães IB; Ferreira J; Braga MQ; Lorentz JF; Assemany PP; Couto EAD; Calijuri ML
    Sci Total Environ; 2024 Apr; 920():170918. PubMed ID: 38354809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination.
    Chen S; Li X; Ma X; Qing R; Chen Y; Zhou H; Yu Y; Li J; Tan Z
    Sci Total Environ; 2023 Dec; 903():166298. PubMed ID: 37591393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae biomass from swine wastewater and its conversion to bioenergy.
    Cheng DL; Ngo HH; Guo WS; Chang SW; Nguyen DD; Kumar SM
    Bioresour Technol; 2019 Mar; 275():109-122. PubMed ID: 30579101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective.
    Renuka N; Ratha SK; Kader F; Rawat I; Bux F
    J Environ Manage; 2021 Nov; 297():113257. PubMed ID: 34303940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable microalgal cultivation in poultry slaughterhouse wastewater for biorefinery products and pollutant removal.
    Ummalyma SB; Chiang A; Herojit N; Arumugam M
    Bioresour Technol; 2023 Apr; 374():128790. PubMed ID: 36842508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy.
    Janpum C; Pombubpa N; Monshupanee T; Incharoensakdi A; In-Na P
    J Biotechnol; 2022 Dec; 360():198-210. PubMed ID: 36414126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phyco-remediation of swine wastewater as a sustainable model based on circular economy.
    López-Pacheco IY; Silva-Núñez A; García-Perez JS; Carrillo-Nieves D; Salinas-Salazar C; Castillo-Zacarías C; Afewerki S; Barceló D; Iqbal HNM; Parra-Saldívar R
    J Environ Manage; 2021 Jan; 278(Pt 2):111534. PubMed ID: 33129031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.