BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

570 related articles for article (PubMed ID: 35149401)

  • 1. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production.
    López-Sánchez A; Silva-Gálvez AL; Aguilar-Juárez Ó; Senés-Guerrero C; Orozco-Nunnelly DA; Carrillo-Nieves D; Gradilla-Hernández MS
    J Environ Manage; 2022 Apr; 308():114612. PubMed ID: 35149401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining biotechnology with circular bioeconomy: From poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen.
    Ferreira A; Marques P; Ribeiro B; Assemany P; de Mendonça HV; Barata A; Oliveira AC; Reis A; Pinheiro HM; Gouveia L
    Environ Res; 2018 Jul; 164():32-38. PubMed ID: 29475106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach.
    Ummalyma SB; Sahoo D; Pandey A
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):58837-58856. PubMed ID: 33527238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based technologies.
    Silva-Gálvez AL; López-Sánchez A; Camargo-Valero MA; Prosenc F; González-López ME; Gradilla-Hernández MS
    J Environ Manage; 2024 Mar; 354():120258. PubMed ID: 38387343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept.
    Najar-Almanzor CE; Velasco-Iglesias KD; Nunez-Ramos R; Uribe-Velázquez T; Solis-Bañuelos M; Fuentes-Carrasco OJ; Chairez I; García-Cayuela T; Carrillo-Nieves D
    J Environ Manage; 2023 Nov; 345():118774. PubMed ID: 37619389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy.
    Díaz V; Leyva-Díaz JC; Almécija MC; Poyatos JM; Del Mar Muñío M; Martín-Pascual J
    Bioresour Technol; 2022 Nov; 363():127968. PubMed ID: 36115507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogranulation process facilitates cost-efficient resources recovery from microalgae-based wastewater treatment systems and the creation of a circular bioeconomy.
    Wang Q; Li H; Shen Q; Wang J; Chen X; Zhang Z; Lei Z; Yuan T; Shimizu K; Liu Y; Lee DJ
    Sci Total Environ; 2022 Jul; 828():154471. PubMed ID: 35288130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review.
    Shahid A; Malik S; Zhu H; Xu J; Nawaz MZ; Nawaz S; Asraful Alam M; Mehmood MA
    Sci Total Environ; 2020 Feb; 704():135303. PubMed ID: 31818584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy.
    Satya ADM; Cheah WY; Yazdi SK; Cheng YS; Khoo KS; Vo DN; Bui XD; Vithanage M; Show PL
    Environ Res; 2023 Feb; 218():114948. PubMed ID: 36455634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation.
    Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF
    J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Algomics technology: Application in wastewater treatment and biofuel production.
    Kadri MS; Singhania RR; Haldar D; Patel AK; Bhatia SK; Saratale G; Parameswaran B; Chang JS
    Bioresour Technol; 2023 Nov; 387():129636. PubMed ID: 37544548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of Scenedesmus obliquus in anaerobically digested swine wastewater from different cleaning processes for pollutants removal and biomass production.
    Tan XB; Zhao ZY; Gong H; Jiang T; Liu XP; Liao JY; Zhang YL
    Chemosphere; 2024 Mar; 352():141515. PubMed ID: 38387659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompounds from wastewater-grown microalgae: a review of emerging cultivation and harvesting technologies.
    Pereira ASAP; Silva TAD; Magalhães IB; Ferreira J; Braga MQ; Lorentz JF; Assemany PP; Couto EAD; Calijuri ML
    Sci Total Environ; 2024 Apr; 920():170918. PubMed ID: 38354809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination.
    Chen S; Li X; Ma X; Qing R; Chen Y; Zhou H; Yu Y; Li J; Tan Z
    Sci Total Environ; 2023 Dec; 903():166298. PubMed ID: 37591393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgae biomass from swine wastewater and its conversion to bioenergy.
    Cheng DL; Ngo HH; Guo WS; Chang SW; Nguyen DD; Kumar SM
    Bioresour Technol; 2019 Mar; 275():109-122. PubMed ID: 30579101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective.
    Renuka N; Ratha SK; Kader F; Rawat I; Bux F
    J Environ Manage; 2021 Nov; 297():113257. PubMed ID: 34303940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable microalgal cultivation in poultry slaughterhouse wastewater for biorefinery products and pollutant removal.
    Ummalyma SB; Chiang A; Herojit N; Arumugam M
    Bioresour Technol; 2023 Apr; 374():128790. PubMed ID: 36842508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy.
    Janpum C; Pombubpa N; Monshupanee T; Incharoensakdi A; In-Na P
    J Biotechnol; 2022 Dec; 360():198-210. PubMed ID: 36414126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phyco-remediation of swine wastewater as a sustainable model based on circular economy.
    López-Pacheco IY; Silva-Núñez A; García-Perez JS; Carrillo-Nieves D; Salinas-Salazar C; Castillo-Zacarías C; Afewerki S; Barceló D; Iqbal HNM; Parra-Saldívar R
    J Environ Manage; 2021 Jan; 278(Pt 2):111534. PubMed ID: 33129031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.