These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 35149401)

  • 21. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts.
    Ahmad A; Banat F; Alsafar H; Hasan SW
    Sci Total Environ; 2022 Feb; 806(Pt 2):150585. PubMed ID: 34597562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective.
    Nagarajan D; Lee DJ; Chen CY; Chang JS
    Bioresour Technol; 2020 Apr; 302():122817. PubMed ID: 32007309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp.
    Prandini JM; da Silva ML; Mezzari MP; Pirolli M; Michelon W; Soares HM
    Bioresour Technol; 2016 Feb; 202():67-75. PubMed ID: 26700760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment.
    Su Y
    Sci Total Environ; 2021 Mar; 762():144590. PubMed ID: 33360454
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can microalgae grown in wastewater reduce the use of inorganic fertilizers?
    Álvarez-González A; Uggetti E; Serrano L; Gorchs G; Ferrer I; Díez-Montero R
    J Environ Manage; 2022 Dec; 323():116224. PubMed ID: 36126597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater.
    Cheng HH; Narindri B; Chu H; Whang LM
    Bioresour Technol; 2020 May; 303():122861. PubMed ID: 32046939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review.
    Ummalyma SB; Sirohi R; Udayan A; Yadav P; Raj A; Sim SJ; Pandey A
    Phytochem Rev; 2022 Apr; ():1-23. PubMed ID: 35431709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microalgae: A green eco-friendly agents for bioremediation of tannery wastewater with simultaneous production of value-added products.
    Devi A; Verma M; Saratale GD; Saratale RG; Ferreira LFR; Mulla SI; Bharagava RN
    Chemosphere; 2023 Sep; 336():139192. PubMed ID: 37353172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Valorization of microalgae biomass into bioproducts promoting circular bioeconomy: a holistic approach of bioremediation and biorefinery.
    Sarma S; Sharma S; Rudakiya D; Upadhyay J; Rathod V; Patel A; Narra M
    3 Biotech; 2021 Aug; 11(8):378. PubMed ID: 34367870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.
    Wang JH; Zhang TY; Dao GH; Xu XQ; Wang XX; Hu H-
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2659-2675. PubMed ID: 28213735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation.
    Silveira CF; Assis LR; Oliveira APS; Calijuri ML
    Sci Total Environ; 2021 Oct; 789():147861. PubMed ID: 34049147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of microalgae in the bioeconomy.
    Fernández FGA; Reis A; Wijffels RH; Barbosa M; Verdelho V; Llamas B
    N Biotechnol; 2021 Mar; 61():99-107. PubMed ID: 33249179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of phycobiliproteins, bioplastics and lipids by the cyanobacteria Synechocystis sp. treating secondary effluent in a biorefinery approach.
    Senatore V; Rueda E; Bellver M; Díez-Montero R; Ferrer I; Zarra T; Naddeo V; García J
    Sci Total Environ; 2023 Jan; 857(Pt 1):159343. PubMed ID: 36228791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bio-products from algae-based biorefinery on wastewater: A review.
    Catone CM; Ripa M; Geremia E; Ulgiati S
    J Environ Manage; 2021 Sep; 293():112792. PubMed ID: 34058450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing sustainability through microalgae cultivation in urban wastewater for biostimulant production and nutrient recovery.
    Álvarez-González A; Greque de Morais E; Planas-Carbonell A; Uggetti E
    Sci Total Environ; 2023 Dec; 904():166878. PubMed ID: 37678521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circular bioeconomy approach for pig farming systems using microalgae-based wastewater treatment processes.
    Mariyappan V; Yu CL; Wu W; Chang JS
    Bioresour Technol; 2024 Feb; 393():130134. PubMed ID: 38040308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass.
    Cheirsilp B; Maneechote W; Srinuanpan S; Angelidaki I
    Bioresour Technol; 2023 Nov; 387():129620. PubMed ID: 37544540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selection of native Tunisian microalgae for simultaneous wastewater treatment and biofuel production.
    Jebali A; Acién FG; Gómez C; Fernández-Sevilla JM; Mhiri N; Karray F; Dhouib A; Molina-Grima E; Sayadi S
    Bioresour Technol; 2015 Dec; 198():424-30. PubMed ID: 26409854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives.
    Tawfik A; Ismail S; Elsayed M; Qyyum MA; Rehan M
    Chemosphere; 2022 Jun; 296():133812. PubMed ID: 35149012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.