These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35149414)

  • 1. Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation.
    Ghosh R; Hale G; Durocher Y; Gatt P
    J Chromatogr A; 2022 Mar; 1667():462881. PubMed ID: 35149414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume.
    Chen G; Roshankhah R; Ghosh R
    J Chromatogr A; 2021 Jun; 1647():462167. PubMed ID: 33962076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles.
    Chen G; Zhitomirsky I; Ghosh R
    Talanta; 2019 Jul; 199():472-477. PubMed ID: 30952286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of process parameters on the efficiency of chromatographic separations using a cuboid packed-bed device.
    Chen G; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1086():23-28. PubMed ID: 29654983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient capture of monoclonal antibody from cell culture supernatant using protein A media contained in a cuboid packed-bed device.
    Chen G; Gerrior A; Durocher Y; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Dec; 1134-1135():121853. PubMed ID: 31785532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study for high-resolution multi-component separation of protein mixture using a cation-exchange cuboid packed-bed device.
    Chen G; Gerrior A; Ghosh R
    J Chromatogr A; 2018 May; 1549():25-30. PubMed ID: 29559265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations.
    Ghosh R; Chen G
    J Chromatogr A; 2017 Sep; 1515():138-145. PubMed ID: 28801045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation and experimental study of the transport of protein bands through cuboid packed-bed devices during chromatographic separations.
    Chen G; Ghosh R
    J Chromatogr A; 2020 Mar; 1615():460764. PubMed ID: 31826814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device.
    Ghosh R; Chen G; Umatheva U; Gatt P
    J Chromatogr A; 2020 May; 1618():460892. PubMed ID: 31992474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution purification of a therapeutic PEGylated protein using a cuboid packed-bed device.
    Chen G; Umatheva U; Pagano J; Yu D; Ghose S; Li Z; Ghosh R
    J Chromatogr A; 2020 Sep; 1630():461524. PubMed ID: 32920248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.
    Madadkar P; Nino SL; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Nov; 1035():1-7. PubMed ID: 27656841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A z
    Ghosh R; Chen G; Roshankhah R; Umatheva U; Gatt P
    J Chromatogr A; 2020 Oct; 1629():461453. PubMed ID: 32861093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrahigh-speed, ultrahigh-resolution preparative separation of protein biopharmaceuticals using membrane chromatography.
    Ghosh R
    J Sep Sci; 2022 Jun; 45(12):2024-2033. PubMed ID: 35353929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography.
    Madadkar P; Sadavarte R; Butler M; Durocher Y; Ghosh R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Jun; 1055-1056():158-164. PubMed ID: 28477519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides.
    Krenkova J; Lacher NA; Svec F
    Anal Chem; 2010 Oct; 82(19):8335-41. PubMed ID: 20806887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure-flow relationships for packed beds of compressible chromatography media at laboratory and production scale.
    Stickel JJ; Fotopoulos A
    Biotechnol Prog; 2001; 17(4):744-51. PubMed ID: 11485438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column.
    Madadkar P; Sadavarte R; Ghosh R
    Membranes (Basel); 2019 Oct; 9(11):. PubMed ID: 31671843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation of a recombinant antibody from cell culture supernatant: continuous annular versus batch and expanded-bed chromatography.
    Giovannini R; Freitag R
    Biotechnol Bioeng; 2001 Jun; 73(6):522-9. PubMed ID: 11344457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the dynamic packing behavior of preparative chromatography columns via discrete particle modeling.
    Dorn M; Hekmat D
    Biotechnol Prog; 2016 Mar; 32(2):363-71. PubMed ID: 26588806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Packing quality, protein binding capacity and separation efficiency of pre-packed columns ranging from 1 mL laboratory to 57 L industrial scale.
    Schweiger S; Berger E; Chan A; Peyser J; Gebski C; Jungbauer A
    J Chromatogr A; 2019 Apr; 1591():79-86. PubMed ID: 30661762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.