BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 35149486)

  • 1. Graph convolutional neural network applied to the prediction of normal boiling point.
    Qu C; Kearsley AJ; Schneider BI; Keyrouz W; Allison TC
    J Mol Graph Model; 2022 May; 112():108149. PubMed ID: 35149486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Kováts Retention Indices Using Graph Neural Networks.
    Qu C; Schneider BI; Kearsley AJ; Keyrouz W; Allison TC
    J Chromatogr A; 2021 Jun; 1646():462100. PubMed ID: 33892256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey on graph-based deep learning for computational histopathology.
    Ahmedt-Aristizabal D; Armin MA; Denman S; Fookes C; Petersson L
    Comput Med Imaging Graph; 2022 Jan; 95():102027. PubMed ID: 34959100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IGPRED: Combination of convolutional neural and graph convolutional networks for protein secondary structure prediction.
    Görmez Y; Sabzekar M; Aydın Z
    Proteins; 2021 Oct; 89(10):1277-1288. PubMed ID: 33993559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep graph convolutional network for small-molecule retention time prediction.
    Kang Q; Fang P; Zhang S; Qiu H; Lan Z
    J Chromatogr A; 2023 Nov; 1711():464439. PubMed ID: 37865024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations.
    Wang J; Liu X; Shen S; Deng L; Liu H
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning for retention time prediction in reversed-phase liquid chromatography.
    Fedorova ES; Matyushin DD; Plyushchenko IV; Stavrianidi AN; Buryak AK
    J Chromatogr A; 2022 Feb; 1664():462792. PubMed ID: 34999303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Learning Model Incorporating Knowledge Representation Vectors and Its Application in Diabetes Prediction.
    Xu H; Zheng Q; Zhu J; Xie Z; Cheng H; Li P; Ji Y
    Dis Markers; 2022; 2022():7593750. PubMed ID: 35990251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SSGraphCPI: A Novel Model for Predicting Compound-Protein Interactions Based on Deep Learning.
    Wang X; Liu J; Zhang C; Wang S
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChemGrapher: Optical Graph Recognition of Chemical Compounds by Deep Learning.
    Oldenhof M; Arany A; Moreau Y; Simm J
    J Chem Inf Model; 2020 Oct; 60(10):4506-4517. PubMed ID: 32924466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and Future.
    Ahmedt-Aristizabal D; Armin MA; Denman S; Fookes C; Petersson L
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the Associations between Meridians and Chinese Traditional Medicine Using a Cost-Sensitive Graph Convolutional Neural Network.
    Yeh HY; Chao CT; Lai YP; Chen HW
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 31979314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum mechanical/neural net model for boiling points with error estimation.
    Chalk AJ; Beck B; Clark T
    J Chem Inf Comput Sci; 2001; 41(2):457-62. PubMed ID: 11277737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of deep learning and transfer learning for cancer prediction based on gene expression data.
    Hanczar B; Bourgeais V; Zehraoui F
    BMC Bioinformatics; 2022 Jul; 23(1):262. PubMed ID: 35786378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
    Fu X
    Comput Intell Neurosci; 2021; 2021():2691346. PubMed ID: 34925485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.