These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35149500)

  • 1. Aminopolycarboxylic acids modified oxygen reduction by zero valent iron: Proton-coupled electron transfer, role of iron ion and reactive oxidant generation.
    Wang Q; Pan Y; Fu W; Wu H; Zhou M; Zhang Y
    J Hazard Mater; 2022 May; 430():128402. PubMed ID: 35149500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron.
    Pan Y; Zhou M; Wang Q; Cai J; Tian Y; Zhang Y
    J Hazard Mater; 2020 Jun; 391():122210. PubMed ID: 32044636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ethylenediamine-N,N'-disuccinic acid on Fenton and photo-Fenton processes using goethite as an iron source: optimization of parameters for bisphenol A degradation.
    Huang W; Brigante M; Wu F; Hanna K; Mailhot G
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):39-50. PubMed ID: 22733556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study.
    Lee H; Lee HJ; Kim HE; Kweon J; Lee BD; Lee C
    J Hazard Mater; 2014 Jan; 265():201-7. PubMed ID: 24361799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N'-disuccinic acid-modified Fenton process.
    Zhang Y; Klamerth N; Messele SA; Chelme-Ayala P; Gamal El-Din M
    J Hazard Mater; 2016 Nov; 318():371-378. PubMed ID: 27442987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: Yield and nature of oxidants.
    Kim HH; Lee H; Kim HE; Seo J; Hong SW; Lee JY; Lee C
    Water Res; 2015 Dec; 86():66-73. PubMed ID: 26093796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Sep; 42(18):6936-41. PubMed ID: 18853812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A.
    Huang W; Brigante M; Wu F; Mousty C; Hanna K; Mailhot G
    Environ Sci Technol; 2013 Feb; 47(4):1952-9. PubMed ID: 23343005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Nitrilotriacetic Acid and [S,S]-Ethylenediamine-N,N'-disuccinic Acid in UV-Fenton for the Treatment of Oil Sands Process-Affected Water at Natural pH.
    Zhang Y; Klamerth N; Chelme-Ayala P; Gamal El-Din M
    Environ Sci Technol; 2016 Oct; 50(19):10535-10544. PubMed ID: 27588553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal-Oxygen Intermediates.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2018 Sep; 51(9):2014-2022. PubMed ID: 30179459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxalate-assisted oxidative degradation of 4-chlorophenol in a bimetallic, zero-valent iron-aluminum/air/water system.
    Fan J; Wang H; Ma L
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16686-98. PubMed ID: 27180839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taping into the super power and magic appeal of ultrasound coupled with EDTA on degradation of 2,4,6-TCP by Fe
    Liu B; Pan T; Liu J; Feng L; Chen Y; Zheng H
    Chemosphere; 2022 Feb; 288(Pt 3):132650. PubMed ID: 34699876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P-cresol degradation through Fe(III)-EDDS/H
    Xiao M; Qi Y; Feng Q; Li K; Fan K; Huang T; Qu P; Gai H; Song H
    Chemosphere; 2021 Apr; 269():129436. PubMed ID: 33385667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of molecular oxygen in the iron(III)-promoted oxidative dehydrogenation of amines.
    Saucedo-Vázquez JP; Kroneck PM; Sosa-Torres ME
    Dalton Trans; 2015 Mar; 44(12):5510-9. PubMed ID: 25697977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y; Pham AN; Waite TD
    J Neurochem; 2016 Jun; 137(6):955-68. PubMed ID: 26991725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Fenton-like system (Mg/Fe-O
    Yang Z; Zhang X; Pu S; Ni R; Lin Y; Liu Y
    Environ Pollut; 2019 Jul; 250():906-913. PubMed ID: 31085477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The degradation of BPA on enhanced heterogeneous photo-Fenton system using EDDS and different nanosized hematite.
    Feng X; Luo M; Huang W; Huang Y; Xie H; Xu Z; Zhang J; Luo W; Wang S; Lin H
    Environ Sci Pollut Res Int; 2020 Jun; 27(18):23062-23072. PubMed ID: 32333345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.