These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35149715)

  • 1. Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe.
    Li L; Lu L; Ren Y; Tang G; Zhao Y; Cai X; Shi Z; Ding H; Liu C; Cheng D; Xie Y; Wang H; Fu X; Yin L; Luo M; Sheng X
    Nat Commun; 2022 Feb; 13(1):839. PubMed ID: 35149715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics.
    Shin G; Gomez AM; Al-Hasani R; Jeong YR; Kim J; Xie Z; Banks A; Lee SM; Han SY; Yoo CJ; Lee JL; Lee SH; Kurniawan J; Tureb J; Guo Z; Yoon J; Park SI; Bang SY; Nam Y; Walicki MC; Samineni VK; Mickle AD; Lee K; Heo SY; McCall JG; Pan T; Wang L; Feng X; Kim TI; Kim JK; Li Y; Huang Y; Gereau RW; Ha JS; Bruchas MR; Rogers JA
    Neuron; 2017 Feb; 93(3):509-521.e3. PubMed ID: 28132830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Influence of GABA Neurons on Dopamine Neurons in the Ventral Tegmental Area Using Optogenetic Techniques.
    Ohta Y; Murakami TE; Kawahara M; Haruta M; Takehara H; Tashiro H; Sasagawa K; Ohta J; Akay M; Akay YM
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics.
    McCall JG; Kim TI; Shin G; Huang X; Jung YH; Al-Hasani R; Omenetto FG; Bruchas MR; Rogers JA
    Nat Protoc; 2013 Dec; 8(12):2413-2428. PubMed ID: 24202555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote control of neural function by X-ray-induced scintillation.
    Matsubara T; Yanagida T; Kawaguchi N; Nakano T; Yoshimoto J; Sezaki M; Takizawa H; Tsunoda SP; Horigane SI; Ueda S; Takemoto-Kimura S; Kandori H; Yamanaka A; Yamashita T
    Nat Commun; 2021 Jul; 12(1):4478. PubMed ID: 34294698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Miniature, Fiber-Coupled, Wireless, Deep-Brain Optogenetic Stimulator.
    Lee ST; Williams PA; Braine CE; Lin DT; John SW; Irazoqui PP
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jul; 23(4):655-64. PubMed ID: 25608307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens.
    Danjo T; Yoshimi K; Funabiki K; Yawata S; Nakanishi S
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6455-60. PubMed ID: 24737889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remote optogenetic control of the enteric nervous system and brain-gut axis in freely-behaving mice enabled by a wireless, battery-free optoelectronic device.
    Efimov AI; Hibberd TJ; Wang Y; Wu M; Zhang K; Ting K; Madhvapathy S; Lee MK; Kim J; Kang J; Riahi M; Zhang H; Travis L; Govier EJ; Yang L; Kelly N; Huang Y; Vázquez-Guardado A; Spencer NJ; Rogers JA
    Biosens Bioelectron; 2024 Aug; 258():116298. PubMed ID: 38701537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless optofluidic brain probes for chronic neuropharmacology and photostimulation.
    Qazi R; Gomez AM; Castro DC; Zou Z; Sim JY; Xiong Y; Abdo J; Kim CY; Anderson A; Lohner F; Byun SH; Chul Lee B; Jang KI; Xiao J; Bruchas MR; Jeong JW
    Nat Biomed Eng; 2019 Aug; 3(8):655-669. PubMed ID: 31384010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals.
    Ausra J; Wu M; Zhang X; Vázquez-Guardado A; Skelton P; Peralta R; Avila R; Murickan T; Haney CR; Huang Y; Rogers JA; Kozorovitskiy Y; Gutruf P
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics.
    McCall JG; Qazi R; Shin G; Li S; Ikram MH; Jang KI; Liu Y; Al-Hasani R; Bruchas MR; Jeong JW; Rogers JA
    Nat Protoc; 2017 Feb; 12(2):219-237. PubMed ID: 28055036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics.
    Park SI; Shin G; McCall JG; Al-Hasani R; Norris A; Xia L; Brenner DS; Noh KN; Bang SY; Bhatti DL; Jang KI; Kang SK; Mickle AD; Dussor G; Price TJ; Gereau RW; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8169-E8177. PubMed ID: 27911798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and Functional Role of Dopaminergic Neurons in the Ventral Tegmental Area during Itch Processing.
    Yuan L; Liang TY; Deng J; Sun YG
    J Neurosci; 2018 Nov; 38(46):9856-9869. PubMed ID: 30266741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic brain-stimulation reward: A new procedure to re-evaluate the rewarding versus aversive effects of cannabinoids in dopamine transporter-Cre mice.
    Humburg BA; Jordan CJ; Zhang HY; Shen H; Han X; Bi GH; Hempel B; Galaj E; Baumann MH; Xi ZX
    Addict Biol; 2021 Jul; 26(4):e13005. PubMed ID: 33538103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation.
    Han X; Jing MY; Zhao TY; Wu N; Song R; Li J
    Metab Brain Dis; 2017 Oct; 32(5):1491-1502. PubMed ID: 28523568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics.
    Zhang Y; Castro DC; Han Y; Wu Y; Guo H; Weng Z; Xue Y; Ausra J; Wang X; Li R; Wu G; Vázquez-Guardado A; Xie Y; Xie Z; Ostojich D; Peng D; Sun R; Wang B; Yu Y; Leshock JP; Qu S; Su CJ; Shen W; Hang T; Banks A; Huang Y; Radulovic J; Gutruf P; Bruchas MR; Rogers JA
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21427-21437. PubMed ID: 31601737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics.
    Samineni VK; Yoon J; Crawford KE; Jeong YR; McKenzie KC; Shin G; Xie Z; Sundaram SS; Li Y; Yang MY; Kim J; Wu D; Xue Y; Feng X; Huang Y; Mickle AD; Banks A; Ha JS; Golden JP; Rogers JA; Gereau RW
    Pain; 2017 Nov; 158(11):2108-2116. PubMed ID: 28700536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection.
    Liu C; Zhao Y; Cai X; Xie Y; Wang T; Cheng D; Li L; Li R; Deng Y; Ding H; Lv G; Zhao G; Liu L; Zou G; Feng M; Sun Q; Yin L; Sheng X
    Microsyst Nanoeng; 2020; 6():64. PubMed ID: 34567675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.