BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35150068)

  • 1. A midgut-specific lytic polysaccharide monooxygenase of Locusta migratoria is indispensable for the deconstruction of the peritrophic matrix.
    Qu MB; Guo XX; Kong L; Hou LJ; Yang Q
    Insect Sci; 2022 Oct; 29(5):1287-1298. PubMed ID: 35150068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AA15 lytic polysaccharide monooxygenase is required for efficient chitinous cuticle turnover during insect molting.
    Qu M; Guo X; Tian S; Yang Q; Kim M; Mun S; Noh MY; Kramer KJ; Muthukrishnan S; Arakane Y
    Commun Biol; 2022 May; 5(1):518. PubMed ID: 35641660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucin family genes are essential for the growth and development of the migratory locust, Locusta migratoria.
    Zhao X; Zhang J; Yang J; Niu N; Zhang J; Yang Q
    Insect Biochem Mol Biol; 2020 Aug; 123():103404. PubMed ID: 32428561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clathrin heavy chain is essential for the development and reproduction of Locusta migratoria.
    Shi X; Li S; Yang L; Liu X; Merzendorfer H; Zhu KY; Zhang J
    Insect Sci; 2022 Dec; 29(6):1601-1611. PubMed ID: 35290723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuolar (H
    Shi X; Liu X; Cooper AM; Silver K; Merzendorfer H; Zhu KY; Zhang J
    Pest Manag Sci; 2022 Apr; 78(4):1555-1566. PubMed ID: 34981606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria.
    Liu X; Zhang H; Li S; Zhu KY; Ma E; Zhang J
    Insect Biochem Mol Biol; 2012 Dec; 42(12):902-10. PubMed ID: 23006725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear receptor HR3 controls locust molt by regulating chitin synthesis and degradation genes of Locusta migratoria.
    Zhao X; Qin Z; Liu W; Liu X; Moussian B; Ma E; Li S; Zhang J
    Insect Biochem Mol Biol; 2018 Jan; 92():1-11. PubMed ID: 29113754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Syntaxin5 is essential for survival by ensuring midgut epithelial homeostsis and regulating feeding in Locusta migratoria.
    Liu X; Gao Y; Li Y; El Wakil A; Moussian B; Zhang J
    Pestic Biochem Physiol; 2024 Jun; 202():105934. PubMed ID: 38879326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNAi-mediated silencing of the neverland gene inhibits molting in the migratory locust, Locusta migratoria.
    Lv J; He QH; Shi P; Zhou F; Zhang TT; Zhang M; Zhang XY
    Pestic Biochem Physiol; 2024 Mar; 200():105845. PubMed ID: 38582577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lethal giant larvae gene is required for normal nymphal development and midgut morphogenesis in Locusta migratoria.
    Shi X; Liu X; Silver K; Zhu KY; Zhang J
    Insect Sci; 2022 Aug; 29(4):1017-1029. PubMed ID: 34978756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Rab family genes and functional analyses of LmRab5 and LmRab11A in the development and RNA interference of Locusta migratoria.
    Abbas M; Fan YH; Shi XK; Gao L; Wang YL; Li T; Cooper AMW; Silver K; Zhu KY; Zhang JZ
    Insect Sci; 2022 Apr; 29(2):320-332. PubMed ID: 34347932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LmCDA1 organizes the cuticle by chitin deacetylation in Locusta migratoria.
    Yu RR; Liu WM; Zhao XM; Zhang M; Li DQ; Zuber R; Ma EB; Zhu KY; Moussian B; Zhang JZ
    Insect Mol Biol; 2019 Jun; 28(3):301-312. PubMed ID: 30471154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust.
    Song H; Zhang J; Li D; Cooper AMW; Silver K; Li T; Liu X; Ma E; Zhu KY; Zhang J
    Insect Biochem Mol Biol; 2017 Jul; 86():68-80. PubMed ID: 28576656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Nanoscale RNAi Constructs as Pesticides for the Control of
    Lu Q; Cui H; Li W; Liu T; Chen Q; Yang Q
    J Agric Food Chem; 2022 Sep; 70(35):10762-10770. PubMed ID: 36000580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of Halloween genes and RNA interference-mediated functional analysis of LmCYP307a2 in Locusta migratoria.
    Zhang XY; He QH; Zhang TT; Wu HH; Zhang JZ; Ma EB
    Insect Sci; 2022 Feb; 29(1):51-64. PubMed ID: 33634599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria.
    Liu X; Li F; Li D; Ma E; Zhang W; Zhu KY; Zhang J
    PLoS One; 2013; 8(8):e71970. PubMed ID: 23977188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria.
    Liu XJ; Sun YW; Li DQ; Li S; Ma EB; Zhang JZ
    Insect Sci; 2018 Apr; 25(2):211-221. PubMed ID: 27696733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of three midgut chitin deacetylases of the Lepidopteran insect Bombyx mori.
    Liu L; Qu M; Liu T; Chen Q; Guo X; Yang J; Yang Q
    J Insect Physiol; 2019; 113():42-48. PubMed ID: 30682338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of LmCDA1 and LmCDA2 in cuticle formation in the foregut and hindgut of Locusta migratoria.
    Zhang M; Ma PJ; Zhang TT; Gao ZM; Zhao P; Liu XJ; Zhang XY; Liu WM; Yu RR; Moussian B; Zhang JZ
    Insect Sci; 2021 Oct; 28(5):1314-1325. PubMed ID: 33037856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis, modifications and degradation of chitin in the formation and turnover of peritrophic matrix in insects.
    Liu X; Cooper AMW; Zhang J; Zhu KY
    J Insect Physiol; 2019 Apr; 114():109-115. PubMed ID: 30902530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.