These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35150080)

  • 1. Liquid-Suspended and Liquid-Bridged Liquid Metal Microdroplets.
    Kim J; Lee J
    Small; 2022 Apr; 18(14):e2108069. PubMed ID: 35150080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing the Rheological Properties of Liquid Metals To Shape Soft Electronic Conductors for Wearable Applications.
    Hirsch A; Dejace L; Michaud HO; Lacour SP
    Acc Chem Res; 2019 Mar; 52(3):534-544. PubMed ID: 30714364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Demand Programming of Liquid Metal-Composite Microstructures through Direct Ink Write 3D Printing.
    Haake A; Tutika R; Schloer GM; Bartlett MD; Markvicka EJ
    Adv Mater; 2022 May; 34(20):e2200182. PubMed ID: 35353948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions.
    Kwak C; Young Ryu S; Park H; Lim S; Yang J; Kim J; Hyung Kim J; Lee J
    J Colloid Interface Sci; 2021 Jan; 582(Pt A):81-89. PubMed ID: 32814225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid Metal Microgels for Three-Dimensional Printing of Smart Electronic Clothes.
    Wu P; Fu J; Xu Y; He Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13458-13467. PubMed ID: 35258916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications.
    Tyowua AT; Harbottle D; Binks BP
    Adv Colloid Interface Sci; 2024 Oct; 332():103274. PubMed ID: 39159542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Additive Manufacturing of Structurally-Colored Architectures.
    Kim JB; Lee HY; Chae C; Lee SY; Kim SH
    Adv Mater; 2024 Mar; 36(9):e2307917. PubMed ID: 37909823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials.
    Corker A; Ng HC; Poole RJ; García-Tuñón E
    Soft Matter; 2019 Feb; 15(6):1444-1456. PubMed ID: 30667028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent progress in liquid metal printing and its applications.
    Liang S; Yang J; Li F; Xie S; Song N; Hu L
    RSC Adv; 2023 Sep; 13(38):26650-26662. PubMed ID: 37681047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct ink writing of porous titanium (Ti6Al4V) lattice structures.
    Elsayed H; Rebesan P; Giacomello G; Pasetto M; Gardin C; Ferroni L; Zavan B; Biasetto L
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109794. PubMed ID: 31349412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High internal phase emulsions gel ink for direct-ink-writing 3D printing of liquid metal.
    Lin Z; Qiu X; Cai Z; Li J; Zhao Y; Lin X; Zhang J; Hu X; Bai H
    Nat Commun; 2024 Jun; 15(1):4806. PubMed ID: 38839743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent progress in multifunctional, reconfigurable, integrated liquid metal-based stretchable sensors and standalone systems.
    Zhu J; Li J; Tong Y; Hu T; Chen Z; Xiao Y; Zhang S; Yang H; Gao M; Pan T; Cheng H; Lin Y
    Prog Mater Sci; 2024 Apr; 142():. PubMed ID: 38745676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing of Liquid Metal Embedded Elastomers for Soft Thermal and Electrical Materials.
    Won P; Valentine CS; Zadan M; Pan C; Vinciguerra M; Patel DK; Ko SH; Walker LM; Majidi C
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55028-55038. PubMed ID: 36458663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets.
    Kim S; Kang S; Lee J
    ACS Omega; 2023 May; 8(20):17748-17757. PubMed ID: 37251162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A micro-vibration-driven direct ink write printing method of gallium-indium alloys.
    Lin S; Zhang L; Cong L
    Sci Rep; 2023 Mar; 13(1):3914. PubMed ID: 36890208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct 3D printing of graphene using capillary suspensions.
    Ding H; Barg S; Derby B
    Nanoscale; 2020 Jun; 12(21):11440-11447. PubMed ID: 32436495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Custom 3D Printable Silicones with Tunable Stiffness.
    Durban MM; Lenhardt JM; Wu AS; Small W; Bryson TM; Perez-Perez L; Nguyen DT; Gammon S; Smay JE; Duoss EB; Lewicki JP; Wilson TS
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printed microfluidic valve on PCB for flow control applications using liquid metal.
    Hamza A; Navale A; Song Q; Bhagwat S; Kotz-Helmer F; Pezeshkpour P; Rapp BE
    Biomed Microdevices; 2024 Jan; 26(1):14. PubMed ID: 38289398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.