These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 35150106)
1. [Mechanical Design and Research of Wearable Exoskeleton Assisted Robot for Upper Limb Rehabilitation]. Wang Z; Wang Z; Yang Y; Wang C; Yang G; Li Y Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Jan; 46(1):42-46. PubMed ID: 35150106 [TBL] [Abstract][Full Text] [Related]
2. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation. Li J; Peng J; Lu Z; Huang K Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470 [TBL] [Abstract][Full Text] [Related]
3. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
4. Pilot Study of a Powered Exoskeleton for Upper Limb Rehabilitation Based on the Wheelchair. Meng Q; Xie Q; Shao H; Cao W; Wang F; Wang L; Yu H; Li S Biomed Res Int; 2019; 2019():9627438. PubMed ID: 31976331 [TBL] [Abstract][Full Text] [Related]
5. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
6. Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. Zeiaee A; Soltani-Zarrin R; Langari R; Tafreshi R IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():759-764. PubMed ID: 28813911 [TBL] [Abstract][Full Text] [Related]
7. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
8. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction. Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059 [TBL] [Abstract][Full Text] [Related]
9. Active Neural Network Control for a Wearable Upper Limb Rehabilitation Exoskeleton Robot Driven by Pneumatic Artificial Muscles. Zhang H; Fan J; Qin Y; Tian M; Han J IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2589-2597. PubMed ID: 39012735 [TBL] [Abstract][Full Text] [Related]
10. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
11. Digital twin rehabilitation system based on self-balancing lower limb exoskeleton. Wang W; He Y; Li F; Li J; Liu J; Wu X Technol Health Care; 2023; 31(1):103-115. PubMed ID: 35754239 [TBL] [Abstract][Full Text] [Related]
12. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot]. Wang L; Hu X; Hu J; Fang Y; He R; Yu H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of Robot-assisted Rehabilitation in Poststroke Recovery of Upper Limb Function Depending on the Severity. Saita K; Morishita T; Hyakutake K; Ogata T; Fukuda H; Kamada S; Inoue T Neurol Med Chir (Tokyo); 2020 Apr; 60(4):217-222. PubMed ID: 32173715 [TBL] [Abstract][Full Text] [Related]
14. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
15. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton. Jebri A; Madani T; Djouani K IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723 [TBL] [Abstract][Full Text] [Related]
16. Clinical validation of kinematic assessments of post-stroke upper limb movements with a multi-joint arm exoskeleton. Grimm F; Kraugmann J; Naros G; Gharabaghi A J Neuroeng Rehabil; 2021 Jun; 18(1):92. PubMed ID: 34078400 [TBL] [Abstract][Full Text] [Related]
17. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot. Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005 [TBL] [Abstract][Full Text] [Related]
18. Preliminary design and development of a low-cost lower-limb exoskeleton system for paediatric rehabilitation. Narayan J; Kumar Dwivedy S Proc Inst Mech Eng H; 2021 May; 235(5):530-545. PubMed ID: 33588634 [TBL] [Abstract][Full Text] [Related]
19. Multivariate analysis of the kinematics of an upper limb rehabilitation robot. Sobiech M; Michnik A; Chuchnowska I; Karpiel I; Wolański W Acta Bioeng Biomech; 2024 Jun; 26(1):55-66. PubMed ID: 39219081 [No Abstract] [Full Text] [Related]
20. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot. Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]