These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35150231)

  • 1. PIPENN: protein interface prediction from sequence with an ensemble of neural nets.
    Stringer B; de Ferrante H; Abeln S; Heringa J; Feenstra KA; Haydarlou R
    Bioinformatics; 2022 Apr; 38(8):2111-2118. PubMed ID: 35150231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seeing the trees through the forest: sequence-based homo- and heteromeric protein-protein interaction sites prediction using random forest.
    Hou Q; De Geest PFG; Vranken WF; Heringa J; Feenstra KA
    Bioinformatics; 2017 May; 33(10):1479-1487. PubMed ID: 28073761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-RNA interface residue prediction using machine learning: an assessment of the state of the art.
    Walia RR; Caragea C; Lewis BA; Towfic F; Terribilini M; El-Manzalawy Y; Dobbs D; Honavar V
    BMC Bioinformatics; 2012 May; 13():89. PubMed ID: 22574904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. emPDBA: protein-DNA binding affinity prediction by combining features from binding partners and interface learned with ensemble regression model.
    Yang S; Gong W; Zhou T; Sun X; Chen L; Zhou W; Li C
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37193676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepDTA: deep drug-target binding affinity prediction.
    Öztürk H; Özgür A; Ozkirimli E
    Bioinformatics; 2018 Sep; 34(17):i821-i829. PubMed ID: 30423097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scoring protein sequence alignments using deep learning.
    Shrestha B; Adhikari B
    Bioinformatics; 2022 May; 38(11):2988-2995. PubMed ID: 35385080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins.
    Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J
    Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer learning via multi-scale convolutional neural layers for human-virus protein-protein interaction prediction.
    Yang X; Yang S; Lian X; Wuchty S; Zhang Z
    Bioinformatics; 2021 Dec; 37(24):4771-4778. PubMed ID: 34273146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces.
    Sanchez-Garcia R; Sorzano COS; Carazo JM; Segura J
    Bioinformatics; 2019 Feb; 35(3):470-477. PubMed ID: 30020406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides.
    He W; Wang Y; Cui L; Su R; Wei L
    Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.
    Adhikari B; Hou J; Cheng J
    Bioinformatics; 2018 May; 34(9):1466-1472. PubMed ID: 29228185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bastion3: a two-layer ensemble predictor of type III secreted effectors.
    Wang J; Li J; Yang B; Xie R; Marquez-Lago TT; Leier A; Hayashida M; Akutsu T; Zhang Y; Chou KC; Selkrig J; Zhou T; Song J; Lithgow T
    Bioinformatics; 2019 Jun; 35(12):2017-2028. PubMed ID: 30388198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues.
    Zhang B; Hou Z; Yang Y; Wong KC; Zhu H; Li X
    Commun Biol; 2024 Jun; 7(1):679. PubMed ID: 38830995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. aPRBind: protein-RNA interface prediction by combining sequence and I-TASSER model-based structural features learned with convolutional neural networks.
    Liu Y; Gong W; Zhao Y; Deng X; Zhang S; Li C
    Bioinformatics; 2021 May; 37(7):937-942. PubMed ID: 32821925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DELPHI: accurate deep ensemble model for protein interaction sites prediction.
    Li Y; Golding GB; Ilie L
    Bioinformatics; 2021 May; 37(7):896-904. PubMed ID: 32840562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An introduction to deep learning on biological sequence data: examples and solutions.
    Jurtz VI; Johansen AR; Nielsen M; Almagro Armenteros JJ; Nielsen H; Sønderby CK; Winther O; Sønderby SK
    Bioinformatics; 2017 Nov; 33(22):3685-3690. PubMed ID: 28961695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.
    Qiu J; Bernhofer M; Heinzinger M; Kemper S; Norambuena T; Melo F; Rost B
    J Mol Biol; 2020 Mar; 432(7):2428-2443. PubMed ID: 32142788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interpretable machine learning method for homo-trimeric protein interface residue-residue interaction prediction.
    Hong Z; Liu J; Chen Y
    Biophys Chem; 2021 Nov; 278():106666. PubMed ID: 34418678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.