These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35150231)

  • 21. A deep dilated convolutional residual network for predicting interchain contacts of protein homodimers.
    Roy RS; Quadir F; Soltanikazemi E; Cheng J
    Bioinformatics; 2022 Mar; 38(7):1904-1910. PubMed ID: 35134816
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks.
    Savojardo C; Bruciaferri N; Tartari G; Martelli PL; Casadio R
    Bioinformatics; 2020 Jan; 36(1):56-64. PubMed ID: 31218353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SeRenDIP-CE: sequence-based interface prediction for conformational epitopes.
    Hou Q; Stringer B; Waury K; Capel H; Haydarlou R; Xue F; Abeln S; Heringa J; Feenstra KA
    Bioinformatics; 2021 Oct; 37(20):3421-3427. PubMed ID: 33974039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SLPred: a multi-view subcellular localization prediction tool for multi-location human proteins.
    Özsarı G; Rifaioglu AS; Atakan A; Doğan T; Martin MJ; Çetin Atalay R; Atalay V
    Bioinformatics; 2022 Sep; 38(17):4226-4229. PubMed ID: 35801913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting protein residue-residue contacts using random forests and deep networks.
    Luttrell J; Liu T; Zhang C; Wang Z
    BMC Bioinformatics; 2019 Mar; 20(Suppl 2):100. PubMed ID: 30871477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MoRFPred_en: Sequence-based prediction of MoRFs using an ensemble learning strategy.
    Fang C; Moriwaki Y; Li C; Shimizu K
    J Bioinform Comput Biol; 2019 Dec; 17(6):1940015. PubMed ID: 32019410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Protein-ATP Binding Residues Based on Ensemble of Deep Convolutional Neural Networks and LightGBM Algorithm.
    Song J; Liu G; Jiang J; Zhang P; Liang Y
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33477866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DeepLoc: prediction of protein subcellular localization using deep learning.
    Almagro Armenteros JJ; Sønderby CK; Sønderby SK; Nielsen H; Winther O
    Bioinformatics; 2017 Nov; 33(21):3387-3395. PubMed ID: 29036616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PST-PRNA: prediction of RNA-binding sites using protein surface topography and deep learning.
    Li P; Liu ZP
    Bioinformatics; 2022 Apr; 38(8):2162-2168. PubMed ID: 35150250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of protein-RNA binding sites by a random forest method with combined features.
    Liu ZP; Wu LY; Wang Y; Zhang XS; Chen L
    Bioinformatics; 2010 Jul; 26(13):1616-22. PubMed ID: 20483814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
    Ieremie I; Ewing RM; Niranjan M
    Bioinformatics; 2022 Apr; 38(8):2269-2277. PubMed ID: 35176146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EnsembleSplice: ensemble deep learning model for splice site prediction.
    Akpokiro V; Martin T; Oluwadare O
    BMC Bioinformatics; 2022 Oct; 23(1):413. PubMed ID: 36203144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning.
    Wang X; Li F; Xu J; Rong J; Webb GI; Ge Z; Li J; Song J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35176756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. StackDPPred: a stacking based prediction of DNA-binding protein from sequence.
    Mishra A; Pokhrel P; Hoque MT
    Bioinformatics; 2019 Feb; 35(3):433-441. PubMed ID: 30032213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SPOT-Contact-LM: improving single-sequence-based prediction of protein contact map using a transformer language model.
    Singh J; Litfin T; Singh J; Paliwal K; Zhou Y
    Bioinformatics; 2022 Mar; 38(7):1888-1894. PubMed ID: 35104320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TSNAPred: predicting type-specific nucleic acid binding residues via an ensemble approach.
    Nie W; Deng L
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.