These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 35150255)
1. PDMDA: predicting deep-level miRNA-disease associations with graph neural networks and sequence features. Yan C; Duan G; Li N; Zhang L; Wu FX; Wang J Bioinformatics; 2022 Apr; 38(8):2226-2234. PubMed ID: 35150255 [TBL] [Abstract][Full Text] [Related]
2. Predicting miRNA-disease associations via learning multimodal networks and fusing mixed neighborhood information. Lou Z; Cheng Z; Li H; Teng Z; Liu Y; Tian Z Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524503 [TBL] [Abstract][Full Text] [Related]
3. PMiSLocMF: predicting miRNA subcellular localizations by incorporating multi-source features of miRNAs. Chen L; Gu J; Zhou B Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39154195 [TBL] [Abstract][Full Text] [Related]
4. Predicting miRNA-disease association via graph attention learning and multiplex adaptive modality fusion. Jin Z; Wang M; Tang C; Zheng X; Zhang W; Sha X; An S Comput Biol Med; 2024 Feb; 169():107904. PubMed ID: 38181611 [TBL] [Abstract][Full Text] [Related]
5. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks. Zhang B; Wang H; Ma C; Huang H; Fang Z; Qu J BMC Bioinformatics; 2024 Oct; 25(1):332. PubMed ID: 39407120 [TBL] [Abstract][Full Text] [Related]
6. SGAEMDA: Predicting miRNA-Disease Associations Based on Stacked Graph Autoencoder. Wang S; Lin B; Zhang Y; Qiao S; Wang F; Wu W; Ren C Cells; 2022 Dec; 11(24):. PubMed ID: 36552748 [TBL] [Abstract][Full Text] [Related]
7. Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Li J; Zhang S; Liu T; Ning C; Zhang Z; Zhou W Bioinformatics; 2020 Apr; 36(8):2538-2546. PubMed ID: 31904845 [TBL] [Abstract][Full Text] [Related]
8. Adaptive deep propagation graph neural network for predicting miRNA-disease associations. Hu H; Zhao H; Zhong T; Dong X; Wang L; Han P; Li Z Brief Funct Genomics; 2023 Nov; 22(5):453-462. PubMed ID: 37078739 [TBL] [Abstract][Full Text] [Related]
9. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
10. Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model. Zhang L; Liu B; Li Z; Zhu X; Liang Z; An J BMC Bioinformatics; 2020 Oct; 21(1):470. PubMed ID: 33087064 [TBL] [Abstract][Full Text] [Related]
11. FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks. Li J; Li Z; Nie R; You Z; Bao W Mol Genet Genomics; 2020 Sep; 295(5):1197-1209. PubMed ID: 32500265 [TBL] [Abstract][Full Text] [Related]
12. Predicting miRNA-disease associations based on PPMI and attention network. Xie X; Wang Y; He K; Sheng N BMC Bioinformatics; 2023 Mar; 24(1):113. PubMed ID: 36959547 [TBL] [Abstract][Full Text] [Related]
13. Variational graph auto-encoders for miRNA-disease association prediction. Ding Y; Tian LP; Lei X; Liao B; Wu FX Methods; 2021 Aug; 192():25-34. PubMed ID: 32798654 [TBL] [Abstract][Full Text] [Related]
14. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases. Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914 [TBL] [Abstract][Full Text] [Related]
15. Predicting miRNA-Disease Associations Based On Multi-View Variational Graph Auto-Encoder With Matrix Factorization. Ding Y; Lei X; Liao B; Wu FX IEEE J Biomed Health Inform; 2022 Jan; 26(1):446-457. PubMed ID: 34111017 [TBL] [Abstract][Full Text] [Related]
16. A method for miRNA diffusion association prediction using machine learning decoding of multi-level heterogeneous graph Transformer encoded representations. Wen S; Liu Y; Yang G; Chen W; Wu H; Zhu X; Wang Y Sci Rep; 2024 Sep; 14(1):20490. PubMed ID: 39227405 [TBL] [Abstract][Full Text] [Related]
17. Combined embedding model for MiRNA-disease association prediction. Liu B; Zhu X; Zhang L; Liang Z; Li Z BMC Bioinformatics; 2021 Mar; 22(1):161. PubMed ID: 33765909 [TBL] [Abstract][Full Text] [Related]
18. A learning-based framework for miRNA-disease association identification using neural networks. Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780 [TBL] [Abstract][Full Text] [Related]
19. MUSCLE: multi-view and multi-scale attentional feature fusion for microRNA-disease associations prediction. Ji B; Zou H; Xu L; Xie X; Peng S Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38605642 [TBL] [Abstract][Full Text] [Related]
20. PMDAGS: Predicting miRNA-Disease Associations With Graph Nonlinear Diffusion Convolution Network and Similarities. Yan C; Duan G IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):394-404. PubMed ID: 38358864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]