These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35150617)

  • 1. Differences in nanoscale organization of regulatory active and inactive human chromatin.
    Brandstetter K; Zülske T; Ragoczy T; Hörl D; Guirao-Ortiz M; Steinek C; Barnes T; Stumberger G; Schwach J; Haugen E; Rynes E; Korber P; Stamatoyannopoulos JA; Leonhardt H; Wedemann G; Harz H
    Biophys J; 2022 Mar; 121(6):977-990. PubMed ID: 35150617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of internucleosomal interaction on folding of the chromatin fiber.
    Stehr R; Kepper N; Rippe K; Wedemann G
    Biophys J; 2008 Oct; 95(8):3677-91. PubMed ID: 18658212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.
    Kepper N; Foethke D; Stehr R; Wedemann G; Rippe K
    Biophys J; 2008 Oct; 95(8):3692-705. PubMed ID: 18212006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure.
    Szerlong HJ; Hansen JC
    Biochem Cell Biol; 2011 Feb; 89(1):24-34. PubMed ID: 21326360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei.
    Rauch J; Knoch TA; Solovei I; Teller K; Stein S; Buiting K; Horsthemke B; Langowski J; Cremer T; Hausmann M; Cremer C
    Differentiation; 2008 Jan; 76(1):66-82. PubMed ID: 18039333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
    Attou A; Zülske T; Wedemann G
    Biophys J; 2022 Dec; 121(24):4788-4799. PubMed ID: 36325618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single fiber view of the nucleosome organization in eukaryotic chromatin.
    Boltengagen M; Verhagen D; Wolff MR; Oberbeckmann E; Hanke M; Gerland U; Korber P; Mueller-Planitz F
    Nucleic Acids Res; 2024 Jan; 52(1):166-185. PubMed ID: 37994698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide nucleosome mapping of Plasmodium falciparum reveals histone-rich coding and histone-poor intergenic regions and chromatin remodeling of core and subtelomeric genes.
    Westenberger SJ; Cui L; Dharia N; Winzeler E; Cui L
    BMC Genomics; 2009 Dec; 10():610. PubMed ID: 20015349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters.
    Cremer M; Schmid VJ; Kraus F; Markaki Y; Hellmann I; Maiser A; Leonhardt H; John S; Stamatoyannopoulos J; Cremer T
    Epigenetics Chromatin; 2017 Aug; 10(1):39. PubMed ID: 28784182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controls of nucleosome positioning in the human genome.
    Gaffney DJ; McVicker G; Pai AA; Fondufe-Mittendorf YN; Lewellen N; Michelini K; Widom J; Gilad Y; Pritchard JK
    PLoS Genet; 2012; 8(11):e1003036. PubMed ID: 23166509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments.
    Arya G; Schlick T
    J Phys Chem A; 2009 Apr; 113(16):4045-59. PubMed ID: 19298048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosomes are translationally positioned on the active allele and rotationally positioned on the inactive allele of the HPRT promoter.
    Chen C; Yang TP
    Mol Cell Biol; 2001 Nov; 21(22):7682-95. PubMed ID: 11604504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A human globin enhancer causes both discrete and widespread alterations in chromatin structure.
    Kim A; Dean A
    Mol Cell Biol; 2003 Nov; 23(22):8099-109. PubMed ID: 14585970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of chromatin hierarchical loops from protein disorder and nucleosome asymmetry.
    Sridhar A; Farr SE; Portella G; Schlick T; Orozco M; Collepardo-Guevara R
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7216-7224. PubMed ID: 32165536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitous human 'master' origins of replication are encoded in the DNA sequence via a local enrichment in nucleosome excluding energy barriers.
    Drillon G; Audit B; Argoul F; Arneodo A
    J Phys Condens Matter; 2015 Feb; 27(6):064102. PubMed ID: 25563930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Histone depletion facilitates chromatin loops on the kilobasepair scale.
    Diesinger PM; Kunkel S; Langowski J; Heermann DW
    Biophys J; 2010 Nov; 99(9):2995-3001. PubMed ID: 21044597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin.
    Thoma F; Koller T; Klug A
    J Cell Biol; 1979 Nov; 83(2 Pt 1):403-27. PubMed ID: 387806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond Sequence: Internucleosomal Interactions Dominate Array Assembly.
    Wang Y; Stormberg T; Hashemi M; Kolomeisky AB; Lyubchenko YL
    J Phys Chem B; 2022 Dec; 126(51):10813-10821. PubMed ID: 36516875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin fiber polymorphism triggered by variations of DNA linker lengths.
    Collepardo-Guevara R; Schlick T
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):8061-6. PubMed ID: 24847063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.