These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35150675)

  • 21. Enrichment of sulfur-oxidizing bacteria using S-doped NiFe
    Li J; Yao C; Song B; Zhang Z; Brock AL; Trapp S; Zhang J
    Sci Total Environ; 2022 Oct; 844():156973. PubMed ID: 35772559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community.
    Xie J; Zou X; Chang Y; Chen C; Ma J; Liu H; Cui MH; Zhang TC
    Bioresour Technol; 2021 Dec; 342():125959. PubMed ID: 34852439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating membrane filtration into bioelectrochemical systems as next generation energy-efficient wastewater treatment technologies for water reclamation: A review.
    Yuan H; He Z
    Bioresour Technol; 2015 Nov; 195():202-9. PubMed ID: 26026232
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.
    Ye B; Luo H; Lu Y; Liu G; Zhang R; Li X
    Bioresour Technol; 2017 Nov; 244(Pt 1):913-919. PubMed ID: 28847080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the complexity of wastewater: The combined impacts of carbohydrates and sulphate on the performance of bioelectrochemical systems.
    Zhao F; Heidrich ES; Curtis TP; Dolfing J
    Water Res; 2020 Jun; 176():115737. PubMed ID: 32240846
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced power generation and wastewater treatment in sustainable biochar electrodes based bioelectrochemical system.
    Wang B; Wang Z; Jiang Y; Tan G; Xu N; Xu Y
    Bioresour Technol; 2017 Oct; 241():841-848. PubMed ID: 28628988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bio-electro catalytic treatment of petroleum produced water: Influence of cathode potential upliftment.
    Jain P; Srikanth S; Kumar M; Sarma PM; Singh MP; Lal B
    Bioresour Technol; 2016 Nov; 219():652-658. PubMed ID: 27544915
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of anode potential on bioelectrochemical and electrochemical tetrathionate degradation.
    Sulonen MLK; Lakaniemi AM; Kokko ME; Puhakka JA
    Bioresour Technol; 2017 Feb; 226():173-180. PubMed ID: 27997871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode.
    Wu S; Zhang X; Lu P; Zhang D
    Chemosphere; 2022 Sep; 303(Pt 2):135128. PubMed ID: 35636600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of sulfur during acetate oxidation in biological anodes.
    Dutta PK; Keller J; Yuan Z; Rozendal RA; Rabaey K
    Environ Sci Technol; 2009 May; 43(10):3839-45. PubMed ID: 19544896
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors influencing silver recovery and power generation in bio-electrochemical reactors.
    Ho NAD; Babel S; Sombatmankhong K
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21024-21037. PubMed ID: 28726226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial community composition is unaffected by anode potential.
    Zhu X; Yates MD; Hatzell MC; Ananda Rao H; Saikaly PE; Logan BE
    Environ Sci Technol; 2014 Jan; 48(2):1352-8. PubMed ID: 24364567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facilitated extracellular electron transfer of Geobacter sulfurreducens biofilm with in situ formed gold nanoparticles.
    Chen M; Zhou X; Liu X; Zeng RJ; Zhang F; Ye J; Zhou S
    Biosens Bioelectron; 2018 Jun; 108():20-26. PubMed ID: 29494884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioelectrochemical degradation of monoaromatic compounds: Current advances and challenges.
    Yang K; Ji M; Liang B; Zhao Y; Zhai S; Ma Z; Yang Z
    J Hazard Mater; 2020 Nov; 398():122892. PubMed ID: 32768818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduction of pH buffer requirement in bioelectrochemical systems.
    Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Nov; 44(21):8259-63. PubMed ID: 20942476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfate reduction and elemental sulfur recovery using photoelectric microbial electrolysis cell.
    Luo H; Bai J; He J; Liu G; Lu Y; Zhang R; Zeng C
    Sci Total Environ; 2020 Aug; 728():138685. PubMed ID: 32361113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrobenzene removal in bioelectrochemical systems.
    Mu Y; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2009 Nov; 43(22):8690-5. PubMed ID: 20028072
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing Roxarsone Degradation and
    Tang R; Prommer H; Yuan S; Wang W; Sun J; Jamieson J; Hu ZH
    Environ Sci Technol; 2021 Jan; 55(1):393-401. PubMed ID: 33301302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Induced bioelectrochemical metabolism for bioremediation of petroleum refinery wastewater: Optimization of applied potential and flow of wastewater.
    Mohanakrishna G; Al-Raoush RI; Abu-Reesh IM
    Bioresour Technol; 2018 Jul; 260():227-232. PubMed ID: 29626782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.