BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35150808)

  • 21. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae.
    Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae.
    Anderson RM; Bitterman KJ; Wood JG; Medvedik O; Sinclair DA
    Nature; 2003 May; 423(6936):181-5. PubMed ID: 12736687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition.
    Sauve AA; Moir RD; Schramm VL; Willis IM
    Mol Cell; 2005 Feb; 17(4):595-601. PubMed ID: 15721262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress exposure results in increased peroxisomal levels of yeast Pnc1 and Gpd1, which are imported via a piggy-backing mechanism.
    Kumar Choudhry S; Singh R; Williams CP; van der Klei IJ
    Biochim Biophys Acta; 2016 Jan; 1863(1):148-56. PubMed ID: 26516056
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfering with glycolysis causes Sir2-dependent hyper-recombination of Saccharomyces cerevisiae plasmids.
    Ralser M; Zeidler U; Lehrach H
    PLoS One; 2009; 4(4):e5376. PubMed ID: 19390637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA binding protein Pub1p regulates glycerol production and stress tolerance by controlling Gpd1p activity during winemaking.
    Orozco H; Sepúlveda A; Picazo C; Matallana E; Aranda A
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5017-27. PubMed ID: 26846624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silencing the glycerol-3-phosphate dehydrogenase gene in Saccharomyces cerevisiae results in more ethanol being produced and less glycerol.
    He W; Ye S; Xue T; Xu S; Li W; Lu J; Cao L; Ye B; Chen Y
    Biotechnol Lett; 2014 Mar; 36(3):523-9. PubMed ID: 24150518
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.
    Guo ZP; Zhang L; Ding ZY; Shi GY
    Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast.
    Hannan A; Abraham NM; Goyal S; Jamir I; Priyakumar UD; Mishra K
    Nucleic Acids Res; 2015 Dec; 43(21):10213-26. PubMed ID: 26319015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of substrate analogs and mutagenesis to study substrate binding and catalysis in the Sir2 family of NAD-dependent protein deacetylases.
    Khan AN; Lewis PN
    J Biol Chem; 2006 Apr; 281(17):11702-11. PubMed ID: 16520376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae.
    Kang WK; Devare M; Kim JY
    J Microbiol; 2017 Feb; 55(2):123-129. PubMed ID: 28120189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3' Truncation of the GPD1 promoter in Saccharomyces cerevisiae for improved ethanol yield and productivity.
    Ding WT; Zhang GC; Liu JJ
    Appl Environ Microbiol; 2013 May; 79(10):3273-81. PubMed ID: 23503313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
    Ehrentraut S; Weber JM; Dybowski JN; Hoffmann D; Ehrenhofer-Murray AE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5522-7. PubMed ID: 20133733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2.
    Bheda P; Swatkoski S; Fiedler KL; Boeke JD; Cotter RJ; Wolberger C
    Proc Natl Acad Sci U S A; 2012 Apr; 109(16):E916-25. PubMed ID: 22474337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nicotinamide induces Fob1-dependent plasmid integration into chromosome XII in Saccharomyces cerevisiae.
    Tripathi K; Matmati N; Zzaman S; Westwater C; Mohanty BK
    FEMS Yeast Res; 2012 Dec; 12(8):949-57. PubMed ID: 22909099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recruitment and allosteric stimulation of a histone-deubiquitinating enzyme during heterochromatin assembly.
    Zukowski A; Al-Afaleq NO; Duncan ED; Yao T; Johnson AM
    J Biol Chem; 2018 Feb; 293(7):2498-2509. PubMed ID: 29288197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1.
    Reverter-Branchat G; Cabiscol E; Tamarit J; Sorolla MA; Ángeles de la Torre M; Ros J
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3667-3676. PubMed ID: 17975074
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic manipulation of longevity-related genes as a tool to regulate yeast life span and metabolite production during winemaking.
    Orozco H; Matallana E; Aranda A
    Microb Cell Fact; 2013 Jan; 12():1. PubMed ID: 23282100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sir2-dependent daughter-to-mother transport of the damaged proteins in yeast is required to prevent high stress sensitivity of the daughters.
    Knorre DA; Kulemzina IA; Sorokin MI; Kochmak SA; Bocharova NA; Sokolov SS; Severin FF
    Cell Cycle; 2010 Nov; 9(22):4501-5. PubMed ID: 21084861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.