These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 35150996)
1. Humic acids restrict the transformation and the stabilization of Cd by iron (hydr)oxides. Qu C; Chen J; Mortimer M; Wu Y; Cai P; Huang Q J Hazard Mater; 2022 May; 430():128365. PubMed ID: 35150996 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic investigation and modeling of Cd immobilization by iron (hydr)oxide-humic acid coprecipitates. Qu C; Fein JB; Chen W; Ma M; Cai P; Huang Q J Hazard Mater; 2021 Oct; 420():126603. PubMed ID: 34329105 [TBL] [Abstract][Full Text] [Related]
3. Binding of Cd by ferrihydrite organo-mineral composites: Implications for Cd mobility and fate in natural and contaminated environments. Du H; Peacock CL; Chen W; Huang Q Chemosphere; 2018 Sep; 207():404-412. PubMed ID: 29803890 [TBL] [Abstract][Full Text] [Related]
4. Modeling of phosphate speciation on goethite surface: Effects of humic acid. Liang Y; Jin J; Chen H; Xu J; Wang M; Tan W Chemosphere; 2024 Jul; 359():142351. PubMed ID: 38761821 [TBL] [Abstract][Full Text] [Related]
5. Binding of Hg to preformed ferrihydrite-humic acid composites synthesized via co-precipitation and adsorption with different morphologies. Liu Y; Cheng Z; Zhi L; Zhou S Ecotoxicol Environ Saf; 2020 Nov; 204():111097. PubMed ID: 32784016 [TBL] [Abstract][Full Text] [Related]
6. Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. Bu H; Lei Q; Tong H; Liu C; Hu S; Xu W; Wang Y; Chen M; Qiao J Sci Total Environ; 2023 Feb; 861():160624. PubMed ID: 36460100 [TBL] [Abstract][Full Text] [Related]
7. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates. Karimian N; Burton ED; Johnston SG Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811 [TBL] [Abstract][Full Text] [Related]
8. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes. Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813 [TBL] [Abstract][Full Text] [Related]
9. Modeling of Cd adsorption to goethite-bacteria composites. Qu C; Ma M; Chen W; Cai P; Yu XY; Feng X; Huang Q Chemosphere; 2018 Feb; 193():943-950. PubMed ID: 29874770 [TBL] [Abstract][Full Text] [Related]
10. Arsenite and arsenate binding to ferrihydrite organo-mineral coprecipitate: Implications for arsenic mobility and fate in natural environments. Xue Q; Ran Y; Tan Y; Peacock CL; Du H Chemosphere; 2019 Jun; 224():103-110. PubMed ID: 30818188 [TBL] [Abstract][Full Text] [Related]
11. Mobility of Cd and Cu in formulated sediments coated with iron hydroxides and/or humic acids: a DGT and DGT-PROFS modeling approach. Nia Y; Garnier JM; Rigaud S; Hanna K; Ciffroy P Chemosphere; 2011 Nov; 85(9):1496-504. PubMed ID: 21992716 [TBL] [Abstract][Full Text] [Related]
12. Sorption of nonpolar neutral organic compounds to low-surface-area metal (hydr)oxide- and humic acid- coated model aquifer sands. Joo JC; Song MS; Kim JK J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):909-18. PubMed ID: 22423998 [TBL] [Abstract][Full Text] [Related]
13. Generic CD-MUSIC-eSGC model parameters to predict the surface reactivity of iron (hydr)oxides. Jin J; Liang Y; Wang M; Fang L; Xiong J; Hou J; Tan W; Koopal L Water Res; 2023 Feb; 230():119534. PubMed ID: 36628867 [TBL] [Abstract][Full Text] [Related]
14. Generic phosphate affinity constants of the CD-MUSIC-eSGC model to predict phosphate adsorption and dominant speciation on iron (hydr)oxides. Jin J; Xiong J; Liang Y; Wang M; Huang C; Koopal L; Tan W Water Res; 2024 Oct; 264():122194. PubMed ID: 39121821 [TBL] [Abstract][Full Text] [Related]
15. NOM-mineral interaction: Significance for speciation of cations and anions. Li J; Weng L; Deng Y; Ma J; Chen Y; Li Y Sci Total Environ; 2022 May; 820():153259. PubMed ID: 35065113 [TBL] [Abstract][Full Text] [Related]
16. Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review. Di Iorio E; Circelli L; Angelico R; Torrent J; Tan W; Colombo C Chemosphere; 2022 Sep; 303(Pt 2):135172. PubMed ID: 35649442 [TBL] [Abstract][Full Text] [Related]
17. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Nelson YM; Lion LW; Shuler ML; Ghiorse WC Environ Sci Technol; 2002 Feb; 36(3):421-5. PubMed ID: 11871557 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of iron (hydr)oxides and Cr(VI) retention mechanisms in soils from tropical and subtropical areas of China. Wang W; Yang L; Gao D; Yu M; Jiang S; Li J; Zhang J; Feng X; Tan W; Liu F; Yin M; Yin H J Hazard Mater; 2024 Mar; 465():133107. PubMed ID: 38043424 [TBL] [Abstract][Full Text] [Related]
19. Determination of interactions of ferrihydrite-humic acid-Pb (II) system. Zhao Z; Yao L; Li J; Ma X; Han L; Lin Z; Guan S Environ Sci Pollut Res Int; 2022 Mar; 29(15):21561-21575. PubMed ID: 34762244 [TBL] [Abstract][Full Text] [Related]
20. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]