These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35151087)

  • 1. Transport-based source tracking of contaminants in a karst aquifer: Model implementation, proof of concept, and application to event-based field data.
    Schiperski F; Zirlewagen J; Stange C; Tiehm A; Licha T; Scheytt T
    Water Res; 2022 Apr; 213():118145. PubMed ID: 35151087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and modeling evidence of kilometer-scale anomalous tracer transport in an alpine karst aquifer.
    Goeppert N; Goldscheider N; Berkowitz B
    Water Res; 2020 Jul; 178():115755. PubMed ID: 32348930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests.
    Ren K; Pan X; Peng C; Chen J; Li J; Zeng J
    J Environ Manage; 2023 Sep; 342():118099. PubMed ID: 37207457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances.
    Pang L; Close M; Goltz M; Noonan M; Sinton L
    J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multitracer test approach to characterize reactive transport in karst aquifers.
    Geyer T; Birk S; Licha T; Liedl R; Sauter M
    Ground Water; 2007; 45(1):36-45. PubMed ID: 17257337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow Cytometry and Fecal Indicator Bacteria Analyses for Fingerprinting Microbial Pollution in Karst Aquifer Systems.
    Vucinic L; O'Connell D; Teixeira R; Coxon C; Gill L
    Water Resour Res; 2022 May; 58(5):e2021WR029840. PubMed ID: 35859924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of pollution and recovery time of karst springs, an example from a carbonate aquifer in Israel.
    Magal E; Arbel Y; Caspi S; Glazman H; Greenbaum N; Yechieli Y
    J Contam Hydrol; 2013 Feb; 145():26-36. PubMed ID: 23270817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy).
    Vižintin G; Ravbar N; Janež J; Koren E; Janež N; Zini L; Treu F; Petrič M
    Sci Total Environ; 2018 Apr; 619-620():1214-1225. PubMed ID: 29734600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann models for flow and transport in saturated karst.
    Anwar S; Sukop MC
    Ground Water; 2009; 47(3):401-13. PubMed ID: 19016892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solute and colloid transport in karst conduits under low- and high-flow conditions.
    Göppert N; Goldscheider N
    Ground Water; 2008; 46(1):61-8. PubMed ID: 18181865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters.
    Dodgen LK; Kelly WR; Panno SV; Taylor SJ; Armstrong DL; Wiles KN; Zhang Y; Zheng W
    Sci Total Environ; 2017 Feb; 578():281-289. PubMed ID: 27836351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and Attenuation of Particles of Different Density and Surface Charge: A Karst Aquifer Field Study.
    Schiperski F; Zirlewagen J; Scheytt T
    Environ Sci Technol; 2016 Aug; 50(15):8028-35. PubMed ID: 27348254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Groundwater flow velocities in karst aquifers; importance of spatial observation scale and hydraulic testing for contaminant transport prediction.
    Medici G; West LJ
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43050-43063. PubMed ID: 34125385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of contaminant transport in fractured carbonate aquifer types: a case study of the Permian Magnesian Limestone Group (NE England, UK).
    Medici G; West LJ; Chapman PJ; Banwart SA
    Environ Sci Pollut Res Int; 2019 Aug; 26(24):24863-24884. PubMed ID: 31240647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria).
    Mayaud C; Wagner T; Benischke R; Birk S
    J Hydrol (Amst); 2014 Apr; 511(100):628-639. PubMed ID: 24748687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of solute transport behaviors in saturated karst aquifer system.
    Chu X; Ding H; Zhang X
    Sci Rep; 2021 Aug; 11(1):15614. PubMed ID: 34341394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenic contaminants as tracers in an urbanizing karst aquifer.
    Mahler B; Massei N
    J Contam Hydrol; 2007 Apr; 91(1-2):81-106. PubMed ID: 17161500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of two artificial sweeteners, cyclamate and acesulfame, to identify and quantify wastewater contributions in a karst spring.
    Zirlewagen J; Licha T; Schiperski F; Nödler K; Scheytt T
    Sci Total Environ; 2016 Mar; 547():356-365. PubMed ID: 26795541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review: Groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico.
    Ghasemizadeh R; Hellweger F; Butscher C; Padilla I; Vesper D; Field M; Alshawabkeh A
    Hydrogeol J; 2012 Dec; 20(8):1441-1461. PubMed ID: 23645996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model.
    Abusaada M; Sauter M
    Ground Water; 2013; 51(4):641-50. PubMed ID: 23039080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.