BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 35151142)

  • 1. Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry.
    Zofair SFF; Ahmad S; Hashmi MA; Khan SH; Khan MA; Younus H
    J Environ Manage; 2022 May; 309():114676. PubMed ID: 35151142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems.
    Bilal M; Iqbal HMN; Barceló D
    Sci Total Environ; 2019 Dec; 695():133896. PubMed ID: 31756868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Laccases and Hemeproteins Systems in Bioremediation of Organic Pollutants.
    Lopes JM; Marques-da-Silva D; Videira PQ; Lagoa RL
    Curr Protein Pept Sci; 2022; 23(6):402-423. PubMed ID: 35794739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent developments in the use of tyrosinase and laccase in environmental applications.
    Ba S; Vinoth Kumar V
    Crit Rev Biotechnol; 2017 Nov; 37(7):819-832. PubMed ID: 28330374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccases: structure, function, and potential application in water bioremediation.
    Arregui L; Ayala M; Gómez-Gil X; Gutiérrez-Soto G; Hernández-Luna CE; Herrera de Los Santos M; Levin L; Rojo-Domínguez A; Romero-Martínez D; Saparrat MCN; Trujillo-Roldán MA; Valdez-Cruz NA
    Microb Cell Fact; 2019 Nov; 18(1):200. PubMed ID: 31727078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering and Applications of fungal laccases for organic synthesis.
    Kunamneni A; Camarero S; García-Burgos C; Plou FJ; Ballesteros A; Alcalde M
    Microb Cell Fact; 2008 Nov; 7():32. PubMed ID: 19019256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungal laccases and their applications in bioremediation.
    Viswanath B; Rajesh B; Janardhan A; Kumar AP; Narasimha G
    Enzyme Res; 2014; 2014():163242. PubMed ID: 24959348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review.
    Theerachat M; Guieysse D; Morel S; Remaud-Siméon M; Chulalaksananukul W
    Appl Biochem Biotechnol; 2019 Feb; 187(2):583-611. PubMed ID: 30009326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hazardous contaminants in the environment and their laccase-assisted degradation - A review.
    Bilal M; Rasheed T; Nabeel F; Iqbal HMN; Zhao Y
    J Environ Manage; 2019 Mar; 234():253-264. PubMed ID: 30634118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes.
    Cañas AI; Camarero S
    Biotechnol Adv; 2010; 28(6):694-705. PubMed ID: 20471466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial laccases: promising biological green tools for industrial applications.
    Guan ZB; Luo Q; Wang HR; Chen Y; Liao XR
    Cell Mol Life Sci; 2018 Oct; 75(19):3569-3592. PubMed ID: 30046841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laccases for removal of recalcitrant and emerging pollutants.
    Majeau JA; Brar SK; Tyagi RD
    Bioresour Technol; 2010 Apr; 101(7):2331-50. PubMed ID: 19948398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccases: blue enzymes for green chemistry.
    Riva S
    Trends Biotechnol; 2006 May; 24(5):219-26. PubMed ID: 16574262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eminent Industrial and Biotechnological Applications of Laccases from Bacterial Source: a Current Overview.
    Akram F; Ashraf S; Haq IU; Shah FI; Aqeel A
    Appl Biochem Biotechnol; 2022 May; 194(5):2336-2356. PubMed ID: 35022963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview.
    Brugnari T; Braga DM; Dos Santos CSA; Torres BHC; Modkovski TA; Haminiuk CWI; Maciel GM
    Bioresour Bioprocess; 2021 Dec; 8(1):131. PubMed ID: 38650295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing the power of bacterial laccases for xenobiotic degradation in water: A 10-year overview.
    Rahman MU; Ullah MW; Shah JA; Sethupathy S; Bilal H; Abdikakharovich SA; Khan AU; Khan KA; Elboughdiri N; Zhu D
    Sci Total Environ; 2024 Mar; 918():170498. PubMed ID: 38307266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential applications of laccase-mediated coupling and grafting reactions: a review.
    Kudanga T; Nyanhongo GS; Guebitz GM; Burton S
    Enzyme Microb Technol; 2011 Mar; 48(3):195-208. PubMed ID: 22112901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis of NiO NPs for metagenome-derived laccase stabilization: Detoxifying pollutants and wastes.
    Ariaeenejad S; Barani M; Sarani M; Lohrasbi-Nejad A; Mohammadi-Nejad G; Salekdeh GH
    Int J Biol Macromol; 2024 May; 266(Pt 1):130986. PubMed ID: 38508564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase catalysis for the synthesis of bioactive compounds.
    Kudanga T; Nemadziva B; Le Roes-Hill M
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):13-33. PubMed ID: 27872999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review.
    Sutaoney P; Pandya S; Gajarlwar D; Joshi V; Ghosh P
    Environ Sci Pollut Res Int; 2022 Dec; 29(57):86499-86527. PubMed ID: 35771325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.