These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 35151171)
1. Specific iodide effect on surface-enhanced Raman scattering for ultra-sensitive detection of organic contaminants in water. Song X; Ren X; Tang D; Li X Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120950. PubMed ID: 35151171 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
3. Annealing Temperature-Dependent Surface-Enhanced Raman spectroscopy on MoS Li M; Liu Y; Liu X; Zhang Y; Zhu T; Feng C; Zhao Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jul; 275():121159. PubMed ID: 35306305 [TBL] [Abstract][Full Text] [Related]
4. Functionalized Au Liu HB; Chen CY; Zhang CN; Du XJ; Li P; Wang S J Food Sci; 2019 Oct; 84(10):2916-2924. PubMed ID: 31502678 [TBL] [Abstract][Full Text] [Related]
5. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC; Yang KH; Liu YC; Yu CC; Wu YH Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430 [TBL] [Abstract][Full Text] [Related]
6. A surface enhanced Raman scattering probe for highly selective and ultra sensitive detection of iodide in water and salt samples. Dasary SS; Ray PC; Singh AK; Arbneshi T; Yu H; Senapati D Analyst; 2013 Feb; 138(4):1195-203. PubMed ID: 23295241 [TBL] [Abstract][Full Text] [Related]
7. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection. Kosović M; Balarin M; Ivanda M; Đerek V; Marciuš M; Ristić M; Gamulin O Appl Spectrosc; 2015 Dec; 69(12):1417-24. PubMed ID: 26556231 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering. Kahraman M; Tokman N; Culha M Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038 [TBL] [Abstract][Full Text] [Related]
9. 3D aluminum/silver hierarchical nanostructure with large areas of dense hot spots for surface-enhanced raman scattering. Zhao N; Li H; Xie Y; Feng Z; Wang Z; Yang Z; Yan X; Wang W; Tian C; Yu H Electrophoresis; 2019 Dec; 40(23-24):3123-3131. PubMed ID: 31576580 [TBL] [Abstract][Full Text] [Related]
10. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
11. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Jiang Z; Gao P; Yang L; Huang C; Li Y Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213 [TBL] [Abstract][Full Text] [Related]
12. SERS-active nanocellulose substrate via in-situ photochemical synthesis. Wu J; Xi J; Chen H; Liu Y; Zhang L; Li P; Wu W Int J Biol Macromol; 2022 Aug; 215():368-376. PubMed ID: 35691436 [TBL] [Abstract][Full Text] [Related]
13. Ingenious Fabrication of Ag-Filled Porous Anodic Alumina Films as Powerful SERS Substrates for Efficient Detection of Biological and Organic Molecules. Liu CY; Ram R; Kolaru RB; Jana AS; Sadhu AS; Chu CS; Lin YN; Pal BN; Chang SH; Biring S Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290944 [TBL] [Abstract][Full Text] [Related]
14. Surface-enhanced Raman scattering-active silver nanostructures with two domains. Chang CC; Yang KH; Liu YC; Yu CC Anal Chim Acta; 2012 Jan; 709():91-7. PubMed ID: 22122936 [TBL] [Abstract][Full Text] [Related]
15. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
16. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Sridhar K; Inbaraj BS; Chen BH Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615 [TBL] [Abstract][Full Text] [Related]
17. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram. Silva de Almeida F; Bussler L; Marcio Lima S; Fiorucci AR; da Cunha Andrade LH Appl Spectrosc; 2016 Jul; 70(7):1157-64. PubMed ID: 27279502 [TBL] [Abstract][Full Text] [Related]
18. Sensitive determination of dopamine levels via surface-enhanced Raman scattering of Ag nanoparticle dimers. Yu X; He X; Yang T; Zhao L; Chen Q; Zhang S; Chen J; Xu J Int J Nanomedicine; 2018; 13():2337-2347. PubMed ID: 29713165 [TBL] [Abstract][Full Text] [Related]
19. Self-Assembled Three-Dimensional Polyamide/Silver Nanoparticle Pore Array as a Highly Sensitive and Reproducible SERS Substrate for Pesticide Detection in Water. Zhang T; Zhang L; Wu S; Wang G; Huang X; Li W; Liu C; Kong Z; Li J; Lu R J Agric Food Chem; 2024 Jan; 72(1):865-873. PubMed ID: 38150720 [TBL] [Abstract][Full Text] [Related]
20. Silver nanoparticles/activated carbon composite as a facile SERS substrate for highly sensitive detection of endogenous formaldehyde in human urine by catalytic reaction. Zheng C; Zhang L; Wang F; Cai Y; Du S; Zhang Z Talanta; 2018 Oct; 188():630-636. PubMed ID: 30029423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]