These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 35151405)

  • 21. Post-SELEX optimization of aptamers.
    Gao S; Zheng X; Jiao B; Wang L
    Anal Bioanal Chem; 2016 Jul; 408(17):4567-73. PubMed ID: 27173394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-SELEX selection of aptamers.
    Berezovski M; Musheev M; Drabovich A; Krylov SN
    J Am Chem Soc; 2006 Feb; 128(5):1410-1. PubMed ID: 16448086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SELEX methods on the road to protein targeting with nucleic acid aptamers.
    Bayat P; Nosrati R; Alibolandi M; Rafatpanah H; Abnous K; Khedri M; Ramezani M
    Biochimie; 2018 Nov; 154():132-155. PubMed ID: 30193856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genomic SELEX: a discovery tool for genomic aptamers.
    Zimmermann B; Bilusic I; Lorenz C; Schroeder R
    Methods; 2010 Oct; 52(2):125-32. PubMed ID: 20541015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Key Aspects of Nucleic Acid Library Design for in Vitro Selection.
    Vorobyeva MA; Davydova AS; Vorobjev PE; Venyaminova AG
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29401748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies.
    Lipi F; Chen S; Chakravarthy M; Rakesh S; Veedu RN
    RNA Biol; 2016 Dec; 13(12):1232-1245. PubMed ID: 27715478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection of DNA aptamers with two modified bases.
    Gawande BN; Rohloff JC; Carter JD; von Carlowitz I; Zhang C; Schneider DJ; Janjic N
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2898-2903. PubMed ID: 28265062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information.
    Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M
    Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of RNA G-quadruplex (rG4)-targeting L-RNA aptamers by rG4-SELEX.
    Umar MI; Chan CY; Kwok CK
    Nat Protoc; 2022 Jun; 17(6):1385-1414. PubMed ID: 35444329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in SELEX Technology and Aptamer Applications in Biomedicine.
    Zhuo Z; Yu Y; Wang M; Li J; Zhang Z; Liu J; Wu X; Lu A; Zhang G; Zhang B
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29036890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RAPID-SELEX for RNA aptamers.
    Szeto K; Latulippe DR; Ozer A; Pagano JM; White BS; Shalloway D; Lis JT; Craighead HG
    PLoS One; 2013; 8(12):e82667. PubMed ID: 24376564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA and RNA aptamers: from tools for basic research towards therapeutic applications.
    Ulrich H; Trujillo CA; Nery AA; Alves JM; Majumder P; Resende RR; Martins AH
    Comb Chem High Throughput Screen; 2006 Sep; 9(8):619-32. PubMed ID: 17017882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directed Evolution of Aptamer Discovery Technologies.
    Wu D; Gordon CKL; Shin JH; Eisenstein M; Soh HT
    Acc Chem Res; 2022 Mar; 55(5):685-695. PubMed ID: 35130439
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The efficient cell-SELEX strategy, Icell-SELEX, using isogenic cell lines for selection and counter-selection to generate RNA aptamers to cell surface proteins.
    Takahashi M; Sakota E; Nakamura Y
    Biochimie; 2016 Dec; 131():77-84. PubMed ID: 27693080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of DNA Aptamers for Root Exudate l-Serine Using Multiple Selection Strategies.
    Mastronardi E; Cyr K; Monreal CM; DeRosa MC
    J Agric Food Chem; 2021 Apr; 69(14):4294-4306. PubMed ID: 33600189
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro Selection of an ATP-Binding TNA Aptamer.
    Zhang L; Chaput JC
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32933142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aptamers: current challenges and future prospects.
    Rozenblum GT; Lopez VG; Vitullo AD; Radrizzani M
    Expert Opin Drug Discov; 2016; 11(2):127-35. PubMed ID: 26630462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interrogating Aptamer Chemical Space Through Modified Nucleotide Substitution Facilitated by Enzymatic DNA Synthesis.
    Niogret G; Bouvier-Müller A; Figazzolo C; Joyce JM; Bonhomme F; England P; Mayboroda O; Pellarin R; Gasser G; Tucker JHR; Tanner JA; Savage GP; Hollenstein M
    Chembiochem; 2024 Jan; 25(1):e202300539. PubMed ID: 37837257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acyclic identification of aptamers for human alpha-thrombin using over-represented libraries and deep sequencing.
    Kupakuwana GV; Crill JE; McPike MP; Borer PN
    PLoS One; 2011; 6(5):e19395. PubMed ID: 21625587
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-throughput methods in aptamer discovery and analysis.
    Cole KH; Lupták A
    Methods Enzymol; 2019; 621():329-346. PubMed ID: 31128787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.