BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 35151742)

  • 1. Performance of hyperspectral data in predicting and mapping zinc concentration in soil.
    Sun W; Liu S; Zhang X; Zhu H
    Sci Total Environ; 2022 Jun; 824():153766. PubMed ID: 35151742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data.
    Wang Y; Zhang X; Sun W; Wang J; Ding S; Liu S
    Sci Total Environ; 2022 Sep; 838(Pt 2):156129. PubMed ID: 35605855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil copper concentration map in mining area generated from AHSI remote sensing imagery.
    Sun W; Liu S; Wang M; Zhang X; Shang K; Liu Q
    Sci Total Environ; 2023 Feb; 860():160511. PubMed ID: 36442635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field hyperspectral data and OLI8 multispectral imagery for heavy metal content prediction and mapping around an abandoned Pb-Zn mining site in northern Tunisia.
    Mezned N; Alayet F; Dkhala B; Abdeljaouad S
    Heliyon; 2022 Jun; 8(6):e09712. PubMed ID: 35756131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI).
    Ru C; Li Z; Tang R
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest.
    Hong Y; Shen R; Cheng H; Chen Y; Zhang Y; Liu Y; Zhou M; Yu L; Liu Y; Liu Y
    Sci Total Environ; 2019 Feb; 651(Pt 2):1969-1982. PubMed ID: 30321720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy.
    Yousefi G; Homaee M; Norouzi AA
    Environ Monit Assess; 2018 Aug; 190(9):513. PubMed ID: 30105407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy.
    Zhang X; Sun W; Cen Y; Zhang L; Wang N
    Sci Total Environ; 2019 Feb; 650(Pt 1):321-334. PubMed ID: 30199678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Estimating heavy metal concentrations in topsoil from vegetation reflectance spectra of Hyperion images: A case study of Yushu County, Qinghai, China.].
    Yang LY; Gao XH; Zhang W; Shi FF; He LH; Jia W
    Ying Yong Sheng Tai Xue Bao; 2016 Jun; 27(6):1775-1784. PubMed ID: 29737683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved multivariate modeling for soil organic matter content estimation using hyperspectral indexes and characteristic bands.
    Zhao MS; Wang T; Lu Y; Wang S; Wu Y
    PLoS One; 2023; 18(6):e0286825. PubMed ID: 37315071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and Relative Quantification of Neodymium in Sillai Patti Carbonatite Using Decision Tree Classification of the Hyperspectral Data.
    Qasim M; Khan SD
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of visible and near infrared spectral reflectance for assessing metals in soil.
    Rathod PH; Müller I; Van der Meer FD; de Smeth B
    Environ Monit Assess; 2015 Oct; 188(10):558. PubMed ID: 27614958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral field spectroscopy and SENTINEL-2 Multispectral data for minerals with high pollution potential content estimation and mapping.
    Dkhala B; Mezned N; Gomez C; Abdeljaouad S
    Sci Total Environ; 2020 Oct; 740():140160. PubMed ID: 32927579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data.
    Sun W; Skidmore AK; Wang T; Zhang X
    Environ Pollut; 2019 Sep; 252(Pt B):1117-1124. PubMed ID: 31252109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling.
    Semella S; Hutengs C; Seidel M; Ulrich M; Schneider B; Ortner M; Thiele-Bruhn S; Ludwig B; Vohland M
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Origin identification of Gardeniae Fructus based on hyperspectral imaging technology].
    Zhou C; Wang H; Yang J; Zhang XB
    Zhongguo Zhong Yao Za Zhi; 2022 Nov; 47(22):6027-6033. PubMed ID: 36471926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism.
    Chen L; Lai J; Tan K; Wang X; Chen Y; Ding J
    Sci Total Environ; 2022 Mar; 813():151882. PubMed ID: 34822891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest.
    Tan K; Wang H; Chen L; Du Q; Du P; Pan C
    J Hazard Mater; 2020 Jan; 382():120987. PubMed ID: 31454609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrieving soil heavy metals concentrations based on GaoFen-5 hyperspectral satellite image at an opencast coal mine, Inner Mongolia, China.
    Zhang B; Guo B; Zou B; Wei W; Lei Y; Li T
    Environ Pollut; 2022 May; 300():118981. PubMed ID: 35150799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inversion of soil heavy metals in metal tailings area based on different spectral transformation and modeling methods.
    Yang N; Han L; Liu M
    Heliyon; 2023 Sep; 9(9):e19782. PubMed ID: 37809479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.