These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35151949)
1. Comparative study of the physiological responses of Skeletonema costatum and Thalassiosira weissflogii to initial pCO Qiu J; Su T; Wang X; Jiang L; Shang Y; Jin P; Xu J; Fan J; Li W; Li F Mar Environ Res; 2022 Mar; 175():105581. PubMed ID: 35151949 [TBL] [Abstract][Full Text] [Related]
2. Combined effects of seawater acidification and benzo(a)pyrene on the physiological performance of the marine bloom-forming diatom Skeletonema costatum. Li F; Jiang L; Zhang T; Qiu J; Lv D; Su T; Li W; Xu J; Wang H Mar Environ Res; 2021 Jul; 169():105396. PubMed ID: 34171593 [TBL] [Abstract][Full Text] [Related]
3. Thalassiosira weissflogii grown in various Zn levels shows different ecophysiological responses to seawater acidification. Wang ZF; Jia LP; Fang LC; Wang ZH; Liu FJ; Li SX; Huang XG Mar Pollut Bull; 2022 Dec; 185(Pt A):114327. PubMed ID: 36356339 [TBL] [Abstract][Full Text] [Related]
4. Carbon assimilation and losses during an ocean acidification mesocosm experiment, with special reference to algal blooms. Liu N; Tong S; Yi X; Li Y; Li Z; Miao H; Wang T; Li F; Yan D; Huang R; Wu Y; Hutchins DA; Beardall J; Dai M; Gao K Mar Environ Res; 2017 Aug; 129():229-235. PubMed ID: 28641894 [TBL] [Abstract][Full Text] [Related]
5. Ocean acidification and desalination increase the growth and photosynthesis of the diatom Skeletonema costatum isolated from the coastal water of the Yellow Sea. Wu R; Wu Y; Zhai R; Gao K; Xu J Mar Environ Res; 2024 May; 197():106450. PubMed ID: 38552454 [TBL] [Abstract][Full Text] [Related]
6. Functional responses of smaller and larger diatoms to gradual CO Li W; Ding J; Li F; Wang T; Yang Y; Li Y; Campbell DA; Gao K Sci Total Environ; 2019 Aug; 680():79-90. PubMed ID: 31102831 [TBL] [Abstract][Full Text] [Related]
7. Ocean acidification interacts with growth light to suppress CO Qu L; Campbell DA; Gao K Mar Pollut Bull; 2021 Feb; 163():112008. PubMed ID: 33461076 [TBL] [Abstract][Full Text] [Related]
8. The effects of pH and pCO Goldman JA; Bender ML; Morel FM Photosynth Res; 2017 Apr; 132(1):83-93. PubMed ID: 28062941 [TBL] [Abstract][Full Text] [Related]
9. The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario. Shang Y; He J; Qiu J; Hu S; Wang X; Zhang T; Wang W; Yuan X; Xu J; Li F Mar Environ Res; 2024 Apr; 196():106425. PubMed ID: 38442592 [TBL] [Abstract][Full Text] [Related]
10. Aggregation and sedimentation of Thalassiosira weissflogii (diatom) in a warmer and more acidified future ocean. Seebah S; Fairfield C; Ullrich MS; Passow U PLoS One; 2014; 9(11):e112379. PubMed ID: 25375640 [TBL] [Abstract][Full Text] [Related]
11. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO Shi D; Hong H; Su X; Liao L; Chang S; Lin W J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184 [TBL] [Abstract][Full Text] [Related]
12. Ocean acidification stimulates particulate organic carbon accumulation in two Antarctic diatom species under moderate and high natural solar radiation. Heiden JP; Thoms S; Bischof K; Trimborn S J Phycol; 2018 Aug; 54(4):505-517. PubMed ID: 29791031 [TBL] [Abstract][Full Text] [Related]
13. Marine heatwaves alter competition between the cultured macroalga Gracilariopsis lemaneiformis and the harmful bloom alga Skeletonema costatum. Gao L; Xiong Y; Fu FX; Hutchins DA; Gao K; Gao G Sci Total Environ; 2024 Oct; 947():174345. PubMed ID: 38960174 [TBL] [Abstract][Full Text] [Related]
14. Mitigation effects of CO Dong F; Wang P; Qian W; Tang X; Zhu X; Wang Z; Cai Z; Wang J Environ Pollut; 2020 Apr; 259():113850. PubMed ID: 31887602 [TBL] [Abstract][Full Text] [Related]
15. Physiological response of a red tide alga (Skeletonema costatum) to nitrate enrichment, with special reference to inorganic carbon acquisition. Gao G; Xia J; Yu J; Zeng X Mar Environ Res; 2018 Feb; 133():15-23. PubMed ID: 29174425 [TBL] [Abstract][Full Text] [Related]
16. Responses of carbonic anhydrases and Rubisco to abrupt CO Zeng X; Jin P; Zou D; Liu Y; Xia J Environ Sci Pollut Res Int; 2019 Jun; 26(16):16388-16395. PubMed ID: 30982194 [TBL] [Abstract][Full Text] [Related]
17. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Wingert CJ; Cochlan WP Harmful Algae; 2021 Jul; 107():102030. PubMed ID: 34456015 [TBL] [Abstract][Full Text] [Related]
18. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges. Yuan W; Gao G; Shi Q; Xu Z; Wu H Mar Environ Res; 2018 Apr; 135():63-69. PubMed ID: 29397992 [TBL] [Abstract][Full Text] [Related]
19. Warming exacerbates the impacts of ultraviolet radiation in temperate diatoms but alleviates the effect on polar species. Cao L; Bi D; Fan W; Xu J; Beardall J; Gao K; Wu Y Photochem Photobiol; 2024; 100(2):491-498. PubMed ID: 37528525 [TBL] [Abstract][Full Text] [Related]
20. Depth-dependent transcriptomic response of diatoms during spring bloom in the western subarctic Pacific Ocean. Suzuki S; Kataoka T; Watanabe T; Yamaguchi H; Kuwata A; Kawachi M Sci Rep; 2019 Oct; 9(1):14559. PubMed ID: 31601926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]