BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 35152318)

  • 1. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications.
    Becirovic E
    Cell Mol Life Sci; 2022 Feb; 79(2):130. PubMed ID: 35152318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants.
    Ding X; Yu L; Chen L; Li Y; Zhang J; Sheng H; Ren Z; Li Y; Yu X; Jin S; Cao J
    Cells; 2022 Sep; 11(19):. PubMed ID: 36231007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-mediated transcriptional activation with synthetic guide RNA.
    Strezoska Ž; Dickerson SM; Maksimova E; Chou E; Gross MM; Hemphill K; Hardcastle T; Perkett M; Stombaugh J; Miller GW; Anderson EM; Vermeulen A; Smith AVB
    J Biotechnol; 2020 Aug; 319():25-35. PubMed ID: 32470463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
    Chapman B; Han JH; Lee HJ; Ruud I; Kim TH
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi.
    Bendixen L; Jensen TI; Bak RO
    Mol Ther; 2023 Jul; 31(7):1920-1937. PubMed ID: 36964659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential.
    Oude Blenke E; Evers MJ; Mastrobattista E; van der Oost J
    J Control Release; 2016 Dec; 244(Pt B):139-148. PubMed ID: 27498021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement.
    Li C; Brant E; Budak H; Zhang B
    J Zhejiang Univ Sci B; 2021 Apr; 22(4):253-284. PubMed ID: 33835761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
    Liu C; Zhang L; Liu H; Cheng K
    J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas9-mediated genome editing: From basic research to translational medicine.
    Jacinto FV; Link W; Ferreira BI
    J Cell Mol Med; 2020 Apr; 24(7):3766-3778. PubMed ID: 32096600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
    Wang XG; Ma SY; Chang JS; Shi R; Wang RL; Zhao P; Xia QY
    Insect Sci; 2019 Dec; 26(6):983-990. PubMed ID: 30088341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy.
    Ghaemi A; Bagheri E; Abnous K; Taghdisi SM; Ramezani M; Alibolandi M
    Life Sci; 2021 Feb; 267():118969. PubMed ID: 33385410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Genome Editing: A Promising Tool for Therapeutic Applications of Induced Pluripotent Stem Cells.
    Zhang Y; Sastre D; Wang F
    Curr Stem Cell Res Ther; 2018; 13(4):243-251. PubMed ID: 29446747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
    Omachi K; Miner JH
    PLoS One; 2022; 17(6):e0270008. PubMed ID: 35763517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, Characterization, and Application of Targeted Gene Activation in Bacteria Using a Modular CRISPRa System.
    Villegas Kcam MC; Chappell J
    Methods Mol Biol; 2022; 2518():203-215. PubMed ID: 35666447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplex genome editing of microorganisms using CRISPR-Cas.
    Adiego-Pérez B; Randazzo P; Daran JM; Verwaal R; Roubos JA; Daran-Lapujade P; van der Oost J
    FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31087001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Surgery and Gene Therapy in Retinal Disorders.
    Chan L; Mahajan VB; Tsang SH
    Yale J Biol Med; 2017 Dec; 90(4):523-532. PubMed ID: 29259518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The CRISPR-Cas system: beyond genome editing].
    Croteau FR; Rousseau GM; Moineau S
    Med Sci (Paris); 2018 Oct; 34(10):813-819. PubMed ID: 30451675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.