These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 35152877)
1. Performance of machine learning models in estimation of ground reaction forces during balance exergaming. Vonstad EK; Bach K; Vereijken B; Su X; Nilsen JH J Neuroeng Rehabil; 2022 Feb; 19(1):18. PubMed ID: 35152877 [TBL] [Abstract][Full Text] [Related]
2. Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training. Vonstad EK; Su X; Vereijken B; Bach K; Nilsen JH Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291687 [TBL] [Abstract][Full Text] [Related]
3. Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Kigo SN; Omondi EO; Omolo BO Sci Rep; 2023 Oct; 13(1):17315. PubMed ID: 37828360 [TBL] [Abstract][Full Text] [Related]
4. Movements of older adults during exergaming interventions that are associated with the Systems Framework for Postural Control: A systematic review. Tahmosybayat R; Baker K; Godfrey A; Caplan N; Barry G Maturitas; 2018 May; 111():90-99. PubMed ID: 29673837 [TBL] [Abstract][Full Text] [Related]
5. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data. Hendry D; Leadbetter R; McKee K; Hopper L; Wild C; O'Sullivan P; Straker L; Campbell A Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013212 [TBL] [Abstract][Full Text] [Related]
6. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure. Finnegan E; Davidson S; Harford M; Watkinson P; Tarassenko L; Villarroel M Sci Rep; 2023 Jan; 13(1):986. PubMed ID: 36653426 [TBL] [Abstract][Full Text] [Related]
7. Estimating blood pressure trends and the nocturnal dip from photoplethysmography. Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397 [TBL] [Abstract][Full Text] [Related]
8. Exergaming to Increase Physical Activity in Older Adults: Feasibility and Practical Implications. Rytterström P; Strömberg A; Jaarsma T; Klompstra L Curr Heart Fail Rep; 2024 Aug; 21(4):439-459. PubMed ID: 39023808 [TBL] [Abstract][Full Text] [Related]
9. Cognitive effects of weight-shifting controlled exergames in patients with chronic stroke: a pilot randomized comparison trial. Hung JW; Chou CX; Chang HF; Wu WC; Hsieh YW; Chen PC; Yu MY; Chang CC; Lin JR Eur J Phys Rehabil Med; 2017 Oct; 53(5):694-702. PubMed ID: 28382812 [TBL] [Abstract][Full Text] [Related]
10. Investigating the Relative Exercise Intensity of Exergames in Prepubertal Children. McNarry MA; Mackintosh KA Games Health J; 2016 Apr; 5(2):135-40. PubMed ID: 26959606 [TBL] [Abstract][Full Text] [Related]
12. Consumer-priced wearable sensors combined with deep learning can be used to accurately predict ground reaction forces during various treadmill running conditions. Carter J; Chen X; Cazzola D; Trewartha G; Preatoni E PeerJ; 2024; 12():e17896. PubMed ID: 39221284 [TBL] [Abstract][Full Text] [Related]
13. Assessing dynamic postural control during exergaming in older adults: A probabilistic approach. Soancatl Aguilar V; Lamoth CJC; Maurits NM; Roerdink JBTM Gait Posture; 2018 Feb; 60():235-240. PubMed ID: 29288962 [TBL] [Abstract][Full Text] [Related]
14. Ground Reaction Force and Moment Estimation through EMG Sensing Using Long Short-Term Memory Network during Posture Coordination. Sakamoto SI; Hutabarat Y; Owaki D; Hayashibe M Cyborg Bionic Syst; 2023; 4():0016. PubMed ID: 37000191 [TBL] [Abstract][Full Text] [Related]
15. A Deep Learning Model for 3D Ground Reaction Force Estimation Using Shoes with Three Uniaxial Load Cells. Kim J; Kang H; Lee S; Choi J; Tack G Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050487 [TBL] [Abstract][Full Text] [Related]
16. Dynamically adjustable foot-ground contact model to estimate ground reaction force during walking and running. Jung Y; Jung M; Ryu J; Yoon S; Park SK; Koo S Gait Posture; 2016 Mar; 45():62-8. PubMed ID: 26979885 [TBL] [Abstract][Full Text] [Related]
17. Exergaming for individuals with neurological disability: a systematic review. Mat Rosly M; Mat Rosly H; Davis Oam GM; Husain R; Hasnan N Disabil Rehabil; 2017 Apr; 39(8):727-735. PubMed ID: 27108475 [TBL] [Abstract][Full Text] [Related]
18. Using open surgery simulation kinematic data for tool and gesture recognition. Goldbraikh A; Volk T; Pugh CM; Laufer S Int J Comput Assist Radiol Surg; 2022 Jun; 17(6):965-979. PubMed ID: 35419721 [TBL] [Abstract][Full Text] [Related]
19. Does a novel exergame challenge balance and activate muscles more than existing off-the-shelf exergames? Willaert J; De Vries AW; Tavernier J; Van Dieen JH; Jonkers I; Verschueren S J Neuroeng Rehabil; 2020 Jan; 17(1):6. PubMed ID: 31941518 [TBL] [Abstract][Full Text] [Related]
20. Exergaming in older adults: a scoping review and implementation potential for patients with heart failure. Verheijden Klompstra L; Jaarsma T; Strömberg A Eur J Cardiovasc Nurs; 2014 Oct; 13(5):388-98. PubMed ID: 24198306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]