These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35152980)
1. Perspectives on divergence of early developmental regulatory pathways: Insight from the evolution of echinoderm double negative gate. Levin N; Yamakawa S; Morino Y; Wada H Curr Top Dev Biol; 2022; 146():1-24. PubMed ID: 35152980 [TBL] [Abstract][Full Text] [Related]
2. Yamazaki A; Morino Y; Urata M; Yamaguchi M; Minokawa T; Furukawa R; Kondo M; Wada H Development; 2020 Feb; 147(4):. PubMed ID: 32001441 [TBL] [Abstract][Full Text] [Related]
3. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms. Shashikant T; Khor JM; Ettensohn CA Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451 [TBL] [Abstract][Full Text] [Related]
4. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins. Erkenbrack EM Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959 [TBL] [Abstract][Full Text] [Related]
5. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Hinman VF; Nguyen AT; Cameron RA; Davidson EH Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13356-61. PubMed ID: 14595011 [TBL] [Abstract][Full Text] [Related]
6. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos. McCauley BS; Weideman EP; Hinman VF Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847 [TBL] [Abstract][Full Text] [Related]
7. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate. Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196 [TBL] [Abstract][Full Text] [Related]
8. Developmental transcriptomics of the brittle star Amphiura filiformis reveals gene regulatory network rewiring in echinoderm larval skeleton evolution. Dylus DV; Czarkwiani A; Blowes LM; Elphick MR; Oliveri P Genome Biol; 2018 Feb; 19(1):26. PubMed ID: 29490679 [TBL] [Abstract][Full Text] [Related]
9. Developmental gene regulatory network evolution: insights from comparative studies in echinoderms. Hinman VF; Cheatle Jarvela AM Genesis; 2014 Mar; 52(3):193-207. PubMed ID: 24549884 [TBL] [Abstract][Full Text] [Related]
10. Architecture and evolution of the Khor JM; Ettensohn CA Elife; 2022 Feb; 11():. PubMed ID: 35212624 [TBL] [Abstract][Full Text] [Related]
11. Lessons from a transcription factor: Alx1 provides insights into gene regulatory networks, cellular reprogramming, and cell type evolution. Ettensohn CA; Guerrero-Santoro J; Khor JM Curr Top Dev Biol; 2022; 146():113-148. PubMed ID: 35152981 [TBL] [Abstract][Full Text] [Related]
12. Large-scale gene expression study in the ophiuroid Amphiura filiformis provides insights into evolution of gene regulatory networks. Dylus DV; Czarkwiani A; StÄngberg J; Ortega-Martinez O; Dupont S; Oliveri P Evodevo; 2016; 7():2. PubMed ID: 26759711 [TBL] [Abstract][Full Text] [Related]
13. Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Erkenbrack EM; Ako-Asare K; Miller E; Tekelenburg S; Thompson JR; Romano L Dev Genes Evol; 2016 Jan; 226(1):37-45. PubMed ID: 26781941 [TBL] [Abstract][Full Text] [Related]
14. Logics and properties of a genetic regulatory program that drives embryonic muscle development in an echinoderm. Andrikou C; Pai CY; Su YH; Arnone MI Elife; 2015 Jul; 4():. PubMed ID: 26218224 [TBL] [Abstract][Full Text] [Related]
15. Echinoderm development and evolution in the post-genomic era. Cary GA; Hinman VF Dev Biol; 2017 Jul; 427(2):203-211. PubMed ID: 28185788 [TBL] [Abstract][Full Text] [Related]
16. Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Ettensohn CA Development; 2009 Jan; 136(1):11-21. PubMed ID: 19060330 [TBL] [Abstract][Full Text] [Related]
17. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. Ben-Tabou de-Leon S; Davidson EH Wiley Interdiscip Rev Syst Biol Med; 2009; 1(2):237-246. PubMed ID: 20228891 [TBL] [Abstract][Full Text] [Related]
18. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Sharma T; Ettensohn CA Development; 2011 Jun; 138(12):2581-90. PubMed ID: 21610034 [TBL] [Abstract][Full Text] [Related]
19. A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres. Revilla-i-Domingo R; Oliveri P; Davidson EH Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12383-8. PubMed ID: 17636127 [TBL] [Abstract][Full Text] [Related]
20. Echinoderm systems for gene regulatory studies in evolution and development. Arnone MI; Andrikou C; Annunziata R Curr Opin Genet Dev; 2016 Aug; 39():129-137. PubMed ID: 27389072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]