These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35152984)

  • 21. A conserved gene regulatory network subcircuit drives different developmental fates in the vegetal pole of highly divergent echinoderm embryos.
    McCauley BS; Weideman EP; Hinman VF
    Dev Biol; 2010 Apr; 340(2):200-8. PubMed ID: 19941847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micromere Differentiation in the Sea Urchin Embryo: Two-Dimensional Gel Electrophoretic Analysis of Newly Synthesized Proteins: (sea urchin/micromere/protein synthesis/differentiation).
    Matsuda R; Kitajima T; Ohinata H; Katoh Y; Higashinakagawa T
    Dev Growth Differ; 1988 Feb; 30(1):25-33. PubMed ID: 37280888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MALATE DEHYDROGENASE: MULTIPLE FORMS IN SEPARATED BLASTOMERES OF SEA URCHIN EMBRYOS.
    MOORE RO; VILLEE CA
    Science; 1963 Oct; 142(3590):389-90. PubMed ID: 14056704
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Change in the adhesive properties of blastomeres during early cleavage stages in sea urchin embryo.
    Masui M; Kominami T
    Dev Growth Differ; 2001 Feb; 43(1):43-53. PubMed ID: 11148451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo.
    Juliano CE; Yajima M; Wessel GM
    Dev Biol; 2010 Jan; 337(2):220-32. PubMed ID: 19878662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants.
    Minokawa T; Amemiya S
    Dev Growth Differ; 1999 Oct; 41(5):535-47. PubMed ID: 10545026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The origin of skeleton forming cells in the sea urchin embryo.
    Urben S; Nislow C; Spiegel M
    Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Developmental potential of small micromeres in sea urchin embryos.
    Kurihara H; Amemiya S
    Zoolog Sci; 2005 Aug; 22(8):845-52. PubMed ID: 16141697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass isolation and culture of sea urchin micromeres.
    Harkey MA; Whiteley AH
    In Vitro Cell Dev Biol; 1985 Feb; 21(2):108-13. PubMed ID: 4008427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional evolution of Ets in echinoderms with focus on the evolution of echinoderm larval skeletons.
    Koga H; Matsubara M; Fujitani H; Miyamoto N; Komatsu M; Kiyomoto M; Akasaka K; Wada H
    Dev Genes Evol; 2010 Sep; 220(3-4):107-15. PubMed ID: 20680330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From genome to anatomy: The architecture and evolution of the skeletogenic gene regulatory network of sea urchins and other echinoderms.
    Shashikant T; Khor JM; Ettensohn CA
    Genesis; 2018 Oct; 56(10):e23253. PubMed ID: 30264451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential behavior of centrosomes in unequally dividing blastomeres during fourth cleavage of sea urchin embryos.
    Holy J; Schatten G
    J Cell Sci; 1991 Mar; 98 ( Pt 3)():423-31. PubMed ID: 2055969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma.
    Wray GA; Raff RA
    Dev Biol; 1989 Apr; 132(2):458-70. PubMed ID: 2924998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone modifications accompanying the onset of developmental commitment.
    Chambers SA; Shaw BR
    Dev Biol; 1987 Dec; 124(2):523-31. PubMed ID: 3678612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphogenesis and gravity in a whole amphibian embryo and in isolated blastomeres of sea urchins.
    Izumi-Kurotani A; Kiyomoto M
    Adv Space Biol Med; 2003; 9():83-99. PubMed ID: 14631630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.